Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris-coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Dan Frumin
iris-coq
Commits
46087950
Commit
46087950
authored
8 years ago
by
Ralf Jung
Browse files
Options
Downloads
Plain Diff
Merge branch 'master' of gitlab.mpi-sws.org:FP/iris-coq
parents
b6192940
27def119
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
heap_lang/lib/ticket_lock.v
+69
-68
69 additions, 68 deletions
heap_lang/lib/ticket_lock.v
with
69 additions
and
68 deletions
heap_lang/lib/ticket_lock.v
+
69
−
68
View file @
46087950
...
@@ -7,26 +7,27 @@ From iris.algebra Require Import gset.
...
@@ -7,26 +7,27 @@ From iris.algebra Require Import gset.
Import
uPred
.
Import
uPred
.
Definition
wait_loop
:
val
:=
Definition
wait_loop
:
val
:=
rec:
"wait_loop"
"x"
"l"
:=
rec:
"wait_loop"
"x"
"l
ock
"
:=
let:
"o"
:=
Fst
!
"l
"
in
let:
"o"
:=
!
(
Fst
"l
ock"
)
in
if:
"x"
=
"o"
if:
"x"
=
"o"
then
#()
(
*
my
turn
*
)
then
#()
(
*
my
turn
*
)
else
"wait_loop"
"x"
"l"
.
else
"wait_loop"
"x"
"lock"
.
Definition
newlock
:
val
:=
λ
:
<>
,
((
*
owner
*
)
ref
#
0
,
(
*
next
*
)
ref
#
0
).
Definition
newlock
:
val
:=
λ
:
<>
,
ref
((
*
owner
*
)
#
0
,
(
*
next
*
)
#
0
).
Definition
acquire
:
val
:=
Definition
acquire
:
val
:=
rec:
"acquire"
"l"
:=
rec:
"acquire"
"l
ock
"
:=
let:
"
oldl
"
:=
!
"l"
in
let:
"
n
"
:=
!
(
Snd
"lock"
)
in
if:
CAS
"l"
"oldl"
(
Fst
"oldl"
,
Snd
"oldl
"
+
#
1
)
if:
CAS
(
Snd
"lock"
)
"n"
(
"n
"
+
#
1
)
then
wait_loop
(
Snd
"oldl"
)
"l
"
then
wait_loop
"n"
"lock
"
else
"acquire"
"l"
.
else
"acquire"
"l
ock
"
.
Definition
release
:
val
:=
Definition
release
:
val
:=
rec:
"release"
"l"
:=
rec:
"release"
"l
ock
"
:=
let:
"o
ldl
"
:=
!
"l"
in
let:
"o"
:=
!
(
Fst
"lock"
)
in
if:
CAS
"l"
"oldl"
(
Fst
"oldl"
+
#
1
,
Snd
"oldl"
)
if:
CAS
(
Fst
"lock"
)
"o"
(
"o"
+
#
1
)
then
#()
then
#()
else
"release"
"l"
.
else
"release"
"l
ock
"
.
Global
Opaque
newlock
acquire
release
wait_loop
.
Global
Opaque
newlock
acquire
release
wait_loop
.
...
@@ -42,28 +43,29 @@ Instance subG_tlockΣ {Σ} : subG tlockΣ Σ → tlockG Σ.
...
@@ -42,28 +43,29 @@ Instance subG_tlockΣ {Σ} : subG tlockΣ Σ → tlockG Σ.
Proof
.
intros
[
?
[
?%
subG_inG
_
]
%
subG_inv
]
%
subG_inv
.
split
;
apply
_.
Qed
.
Proof
.
intros
[
?
[
?%
subG_inG
_
]
%
subG_inv
]
%
subG_inv
.
split
;
apply
_.
Qed
.
Section
proof
.
Section
proof
.
Context
`
{!
heapG
Σ
,
!
tlockG
Σ
}
(
N
:
namespace
).
Context
`
{!
heapG
Σ
,
!
tlockG
Σ
}
(
N
:
namespace
)
(
HN
:
heapN
⊥
N
)
.
Definition
tickets_inv
(
n
:
nat
)
(
gs
:
gset_disjUR
nat
)
:
iProp
Σ
:=
Definition
tickets_inv
(
n
:
nat
)
(
gs
:
gset_disjUR
nat
)
:
iProp
Σ
:=
(
gs
=
GSet
(
seq_set
0
n
))
%
I
.
(
gs
=
GSet
(
seq_set
0
n
))
%
I
.
Definition
lock_inv
(
γ
1
γ
2
:
gname
)
(
l
:
loc
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:=
Definition
lock_inv
(
γ
1
γ
2
:
gname
)
(
lo
ln
:
loc
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:=
(
∃
o
n
:
nat
,
l
↦
(#
o
,
#
n
)
★
(
∃
(
o
n
:
nat
),
auth_inv
γ
1
(
tickets_inv
n
)
★
lo
↦
#
o
★
ln
↦
#
n
★
((
own
γ
2
(
Excl
())
★
R
)
∨
auth_own
γ
1
(
GSet
{
[
o
]
}
)))
%
I
.
auth_inv
γ
1
(
tickets_inv
n
)
★
((
own
γ
2
(
Excl
())
★
R
)
∨
auth_own
γ
1
(
GSet
{
[
o
]
}
)))
%
I
.
Definition
is_lock
(
l
:
loc
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:=
Definition
is_lock
(
l
:
val
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:=
(
∃
γ
1
γ
2
,
heapN
⊥
N
∧
heap_ctx
∧
inv
N
(
lock_inv
γ
1
γ
2
l
R
))
%
I
.
(
∃
γ
1
γ
2
(
lo
ln
:
loc
),
heap_ctx
∧
l
=
(#
lo
,
#
ln
)
%
V
∧
inv
N
(
lock_inv
γ
1
γ
2
l
o
ln
R
))
%
I
.
Definition
issued
(
l
:
loc
)
(
x
:
nat
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:=
Definition
issued
(
l
:
val
)
(
x
:
nat
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:=
(
∃
γ
1
γ
2
,
heapN
⊥
N
∧
heap_ctx
∧
inv
N
(
lock_inv
γ
1
γ
2
l
R
)
∧
(
∃
γ
1
γ
2
(
lo
ln
:
loc
),
heap_ctx
∧
l
=
(#
lo
,
#
ln
)
%
V
∧
inv
N
(
lock_inv
γ
1
γ
2
l
o
ln
R
)
∧
auth_own
γ
1
(
GSet
{
[
x
]
}
))
%
I
.
auth_own
γ
1
(
GSet
{
[
x
]
}
))
%
I
.
Definition
locked
(
l
:
loc
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:=
Definition
locked
(
l
:
val
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:=
(
∃
γ
1
γ
2
,
heapN
⊥
N
∧
heap_ctx
∧
inv
N
(
lock_inv
γ
1
γ
2
l
R
)
∧
(
∃
γ
1
γ
2
(
lo
ln
:
loc
),
heap_ctx
∧
l
=
(#
lo
,
#
ln
)
%
V
∧
inv
N
(
lock_inv
γ
1
γ
2
l
o
ln
R
)
∧
own
γ
2
(
Excl
()))
%
I
.
own
γ
2
(
Excl
()))
%
I
.
Global
Instance
lock_inv_ne
n
γ
1
γ
2
l
:
Proper
(
dist
n
==>
dist
n
)
(
lock_inv
γ
1
γ
2
l
).
Global
Instance
lock_inv_ne
n
γ
1
γ
2
l
o
ln
:
Proper
(
dist
n
==>
dist
n
)
(
lock_inv
γ
1
γ
2
l
o
ln
).
Proof
.
solve_proper
.
Qed
.
Proof
.
solve_proper
.
Qed
.
Global
Instance
is_lock_ne
n
l
:
Proper
(
dist
n
==>
dist
n
)
(
is_lock
l
).
Global
Instance
is_lock_ne
n
l
:
Proper
(
dist
n
==>
dist
n
)
(
is_lock
l
).
Proof
.
solve_proper
.
Qed
.
Proof
.
solve_proper
.
Qed
.
...
@@ -74,14 +76,13 @@ Global Instance is_lock_persistent l R : PersistentP (is_lock l R).
...
@@ -74,14 +76,13 @@ Global Instance is_lock_persistent l R : PersistentP (is_lock l R).
Proof
.
apply
_.
Qed
.
Proof
.
apply
_.
Qed
.
Lemma
newlock_spec
(
R
:
iProp
Σ
)
Φ
:
Lemma
newlock_spec
(
R
:
iProp
Σ
)
Φ
:
heapN
⊥
N
→
heap_ctx
★
R
★
(
∀
l
,
is_lock
l
R
-
★
Φ
l
)
⊢
WP
newlock
#()
{{
Φ
}}
.
heap_ctx
★
R
★
(
∀
l
,
is_lock
l
R
-
★
Φ
#
l
)
⊢
WP
newlock
#()
{{
Φ
}}
.
Proof
.
Proof
.
iIntros
(
?
)
"(#Hh & HR & HΦ)"
.
rewrite
/
newlock
.
iIntros
"(#Hh & HR & HΦ)"
.
rewrite
/
newlock
.
wp_seq
.
wp_alloc
l
as
"Hl"
.
wp_seq
.
wp_alloc
l
o
as
"Hl
o"
.
wp_alloc
ln
as
"Hln
"
.
iVs
(
own_alloc
(
Excl
()))
as
(
γ
2
)
"Hγ2"
;
first
done
.
iVs
(
own_alloc
(
Excl
()))
as
(
γ
2
)
"Hγ2"
;
first
done
.
iVs
(
own_alloc_strong
(
Auth
(
Excl
'
∅
)
∅
)
{
[
γ
2
]
}
)
as
(
γ
1
)
"[% Hγ1]"
;
first
done
.
iVs
(
own_alloc_strong
(
Auth
(
Excl
'
∅
)
∅
)
{
[
γ
2
]
}
)
as
(
γ
1
)
"[% Hγ1]"
;
first
done
.
iVs
(
inv_alloc
N
_
(
lock_inv
γ
1
γ
2
l
R
)
with
"[-HΦ]"
).
iVs
(
inv_alloc
N
_
(
lock_inv
γ
1
γ
2
l
o
ln
R
)
with
"[-HΦ]"
).
{
iNext
.
rewrite
/
lock_inv
.
{
iNext
.
rewrite
/
lock_inv
.
iExists
0
%
nat
,
0
%
nat
.
iExists
0
%
nat
,
0
%
nat
.
iFrame
.
iFrame
.
...
@@ -93,90 +94,90 @@ Proof.
...
@@ -93,90 +94,90 @@ Proof.
by
iFrame
.
}
by
iFrame
.
}
iVsIntro
.
iVsIntro
.
iApply
"HΦ"
.
iApply
"HΦ"
.
iExists
γ
1
,
γ
2.
iExists
γ
1
,
γ
2
,
lo
,
ln
.
iSplit
;
by
auto
.
iSplit
;
by
auto
.
Qed
.
Qed
.
Lemma
wait_loop_spec
l
x
R
(
Φ
:
val
→
iProp
Σ
)
:
Lemma
wait_loop_spec
l
x
R
(
Φ
:
val
→
iProp
Σ
)
:
issued
l
x
R
★
(
∀
l
,
locked
l
R
-
★
R
-
★
Φ
#())
⊢
WP
wait_loop
#
x
#
l
{{
Φ
}}
.
issued
l
x
R
★
(
∀
l
,
locked
l
R
-
★
R
-
★
Φ
#())
⊢
WP
wait_loop
#
x
l
{{
Φ
}}
.
Proof
.
Proof
.
iIntros
"[Hl HΦ]"
.
iDestruct
"Hl"
as
(
γ
1
γ
2
)
"(
%
&
#?
& #? & Ht)"
.
iIntros
"[Hl HΦ]"
.
iDestruct
"Hl"
as
(
γ
1
γ
2
lo
ln
)
"(
#?
&
%
& #? & Ht)"
.
iL
ö
b
as
"IH"
.
wp_rec
.
wp_let
.
wp_bind
(
!
_
)
%
E
.
iL
ö
b
as
"IH"
.
wp_rec
.
subst
.
wp_let
.
wp_proj
.
wp_bind
(
!
_
)
%
E
.
iInv
N
as
(
o
n
)
"[Hl Ha]"
"Hclose"
.
iInv
N
as
(
o
n
)
"[Hl
o [Hln
Ha]
]
"
"Hclose"
.
wp_load
.
destruct
(
decide
(
x
=
o
))
as
[
->|
Hneq
].
wp_load
.
destruct
(
decide
(
x
=
o
))
as
[
->|
Hneq
].
-
iDestruct
"Ha"
as
"[Hainv [[Ho HR] | Haown]]"
.
-
iDestruct
"Ha"
as
"[Hainv [[Ho HR] | Haown]]"
.
+
iVs
(
"Hclose"
with
"[Hl Hainv Ht]"
).
+
iVs
(
"Hclose"
with
"[Hl
o Hln
Hainv Ht]"
).
{
iNext
.
iExists
o
,
n
.
iFrame
.
eauto
.
}
{
iNext
.
iExists
o
,
n
.
iFrame
.
eauto
.
}
iVsIntro
.
wp_proj
.
wp_let
.
wp_op
=>
[
_
|
[]]
//.
iVsIntro
.
wp_let
.
wp_op
=>
[
_
|
[]]
//.
wp_if
.
iVsIntro
.
wp_if
.
iVsIntro
.
iApply
(
"HΦ"
with
"[-HR] HR"
).
iExists
γ
1
,
γ
2
;
eauto
.
iApply
(
"HΦ"
with
"[-HR] HR"
).
iExists
γ
1
,
γ
2
,
lo
,
ln
;
eauto
.
+
iExFalso
.
iCombine
"Ht"
"Haown"
as
"Haown"
.
+
iExFalso
.
iCombine
"Ht"
"Haown"
as
"Haown"
.
iDestruct
(
auth_own_valid
with
"Haown"
)
as
%
?%
gset_disj_valid_op
.
iDestruct
(
auth_own_valid
with
"Haown"
)
as
%
?%
gset_disj_valid_op
.
set_solver
.
set_solver
.
-
iVs
(
"Hclose"
with
"[Hl Ha]"
).
-
iVs
(
"Hclose"
with
"[Hl
o Hln
Ha]"
).
{
iNext
.
iExists
o
,
n
.
by
iFrame
.
}
{
iNext
.
iExists
o
,
n
.
by
iFrame
.
}
iVsIntro
.
wp_proj
.
wp_let
.
wp_op
=>?
;
first
omega
.
iVsIntro
.
wp_let
.
wp_op
=>?
;
first
omega
.
wp_if
.
by
iApply
(
"IH"
with
"Ht"
).
wp_if
.
by
iApply
(
"IH"
with
"Ht"
).
Qed
.
Qed
.
Lemma
acquire_spec
l
R
(
Φ
:
val
→
iProp
Σ
)
:
Lemma
acquire_spec
l
R
(
Φ
:
val
→
iProp
Σ
)
:
is_lock
l
R
★
(
∀
l
,
locked
l
R
-
★
R
-
★
Φ
#())
⊢
WP
acquire
#
l
{{
Φ
}}
.
is_lock
l
R
★
(
∀
l
,
locked
l
R
-
★
R
-
★
Φ
#())
⊢
WP
acquire
l
{{
Φ
}}
.
Proof
.
Proof
.
iIntros
"[Hl HΦ]"
.
iDestruct
"Hl"
as
(
γ
1
γ
2
)
"(
%
&
#?
& #?)"
.
iIntros
"[Hl HΦ]"
.
iDestruct
"Hl"
as
(
γ
1
γ
2
lo
ln
)
"(
#?
&
%
& #?)"
.
iL
ö
b
as
"IH"
.
wp_rec
.
wp_bind
(
!
_
)
%
E
.
iL
ö
b
as
"IH"
.
wp_rec
.
wp_bind
(
!
_
)
%
E
.
subst
.
wp_proj
.
iInv
N
as
(
o
n
)
"[Hl Ha]"
"Hclose"
.
iInv
N
as
(
o
n
)
"[Hl
o [Hln
Ha]
]
"
"Hclose"
.
wp_load
.
iVs
(
"Hclose"
with
"[Hl Ha]"
).
wp_load
.
iVs
(
"Hclose"
with
"[Hl
o Hln
Ha]"
).
{
iNext
.
iExists
o
,
n
.
by
iFrame
.
}
{
iNext
.
iExists
o
,
n
.
by
iFrame
.
}
iVsIntro
.
wp_let
.
wp_proj
.
wp_proj
.
wp_op
.
iVsIntro
.
wp_let
.
wp_proj
.
wp_op
.
wp_bind
(
CAS
_
_
_
).
wp_bind
(
CAS
_
_
_
).
iInv
N
as
(
o
'
n
'
)
"[Hl [Hainv Haown]]"
"Hclose"
.
iInv
N
as
(
o
'
n
'
)
"[Hl
o' [Hln'
[Hainv Haown]]
]
"
"Hclose"
.
destruct
(
decide
(
(#
o
'
,
#
n
'
)
=
(#
o
,
#
n
))
)
%
V
destruct
(
decide
(#
n
'
=
#
n
))
%
V
as
[[
=
->%
Nat2Z
.
inj
->%
Nat2Z
.
inj
]
|
Hneq
].
as
[[
=
->%
Nat2Z
.
inj
]
|
Hneq
].
-
wp_cas_suc
.
-
wp_cas_suc
.
iDestruct
"Hainv"
as
(
s
)
"[Ho %]"
;
subst
.
iDestruct
"Hainv"
as
(
s
)
"[Ho %]"
;
subst
.
iVs
(
own_update
with
"Ho"
)
as
"Ho"
.
iVs
(
own_update
with
"Ho"
)
as
"Ho"
.
{
eapply
auth_update_no_frag
,
(
gset_alloc_empty_local_update
n
).
{
eapply
auth_update_no_frag
,
(
gset_alloc_empty_local_update
n
).
rewrite
elem_of_seq_set
;
omega
.
}
rewrite
elem_of_seq_set
;
omega
.
}
iDestruct
"Ho"
as
"[Hofull Hofrag]"
.
iDestruct
"Ho"
as
"[Hofull Hofrag]"
.
iVs
(
"Hclose"
with
"[Hl Haown Hofull]"
).
iVs
(
"Hclose"
with
"[Hl
o' Hln'
Haown Hofull]"
).
{
rewrite
gset_disj_union
;
last
by
apply
(
seq_set_S_disjoint
0
).
{
rewrite
gset_disj_union
;
last
by
apply
(
seq_set_S_disjoint
0
).
rewrite
-
(
seq_set_S_union_L
0
).
rewrite
-
(
seq_set_S_union_L
0
).
iNext
.
iExists
o
,
(
S
n
)
%
nat
.
iNext
.
iExists
o
'
,
(
S
n
)
%
nat
.
rewrite
Nat2Z
.
inj_succ
-
Z
.
add_1_r
.
rewrite
Nat2Z
.
inj_succ
-
Z
.
add_1_r
.
iFrame
.
iExists
(
GSet
(
seq_set
0
(
S
n
))).
by
iFrame
.
}
iFrame
.
iExists
(
GSet
(
seq_set
0
(
S
n
))).
by
iFrame
.
}
iVsIntro
.
wp_if
.
wp_proj
.
iVsIntro
.
wp_if
.
iApply
wait_loop_spec
.
iApply
(
wait_loop_spec
(#
lo
,
#
ln
))
.
iSplitR
"HΦ"
;
last
by
done
.
iSplitR
"HΦ"
;
last
by
done
.
rewrite
/
issued
/
auth_own
;
eauto
10.
rewrite
/
issued
/
auth_own
;
eauto
10.
-
wp_cas_fail
.
-
wp_cas_fail
.
iVs
(
"Hclose"
with
"[Hl Hainv Haown]"
).
iVs
(
"Hclose"
with
"[Hl
o' Hln'
Hainv Haown]"
).
{
iNext
.
iExists
o
'
,
n
'
.
by
iFrame
.
}
{
iNext
.
iExists
o
'
,
n
'
.
by
iFrame
.
}
iVsIntro
.
wp_if
.
by
iApply
"IH"
.
iVsIntro
.
wp_if
.
by
iApply
"IH"
.
Qed
.
Qed
.
Lemma
release_spec
R
l
(
Φ
:
val
→
iProp
Σ
)
:
Lemma
release_spec
R
l
(
Φ
:
val
→
iProp
Σ
)
:
locked
l
R
★
R
★
Φ
#()
⊢
WP
release
#
l
{{
Φ
}}
.
locked
l
R
★
R
★
Φ
#()
⊢
WP
release
l
{{
Φ
}}
.
Proof
.
Proof
.
iIntros
"(Hl & HR & HΦ)"
;
iDestruct
"Hl"
as
(
γ
1
γ
2
)
"(
%
&
#?
& #? & Hγ)"
.
iIntros
"(Hl & HR & HΦ)"
;
iDestruct
"Hl"
as
(
γ
1
γ
2
lo
ln
)
"(
#?
&
%
& #? & Hγ)"
.
iL
ö
b
as
"IH"
.
wp_rec
.
wp_bind
(
!
_
)
%
E
.
iL
ö
b
as
"IH"
.
wp_rec
.
subst
.
wp_proj
.
wp_bind
(
!
_
)
%
E
.
iInv
N
as
(
o
n
)
"[Hl Hr]"
"Hclose"
.
iInv
N
as
(
o
n
)
"[Hl
o [Hln
Hr]
]
"
"Hclose"
.
wp_load
.
iVs
(
"Hclose"
with
"[Hl Hr]"
).
wp_load
.
iVs
(
"Hclose"
with
"[Hl
o Hln
Hr]"
).
{
iNext
.
iExists
o
,
n
.
by
iFrame
.
}
{
iNext
.
iExists
o
,
n
.
by
iFrame
.
}
iVsIntro
.
wp_let
.
wp_bind
(
CAS
_
_
_
).
iVsIntro
.
wp_let
.
wp_bind
(
CAS
_
_
_
).
wp_proj
.
wp_op
.
wp_proj
.
wp_proj
.
wp_op
.
iInv
N
as
(
o
'
n
'
)
"[Hl Hr]"
"Hclose"
.
iInv
N
as
(
o
'
n
'
)
"[Hl
o' [Hln'
Hr]
]
"
"Hclose"
.
destruct
(
decide
(
(#
o
'
,
#
n
'
)
=
(
#
o
,
#
n
)
))
%
V
destruct
(
decide
(#
o
'
=
#
o
))
%
V
as
[[
=
->%
Nat2Z
.
inj
->%
Nat2Z
.
inj
]
|
Hneq
].
as
[[
=
->%
Nat2Z
.
inj
]
|
Hneq
].
-
wp_cas_suc
.
-
wp_cas_suc
.
iDestruct
"Hr"
as
"[Hainv [[Ho _] | Hown]]"
.
iDestruct
"Hr"
as
"[Hainv [[Ho _] | Hown]]"
.
+
iExFalso
.
iCombine
"Hγ"
"Ho"
as
"Ho"
.
+
iExFalso
.
iCombine
"Hγ"
"Ho"
as
"Ho"
.
iDestruct
(
own_valid
with
"#Ho"
)
as
%
[].
iDestruct
(
own_valid
with
"#Ho"
)
as
%
[].
+
iVs
(
"Hclose"
with
"[Hl HR Hγ Hainv]"
).
+
iVs
(
"Hclose"
with
"[Hl
o' Hln'
HR Hγ Hainv]"
).
{
iNext
.
iExists
(
o
+
1
)
%
nat
,
n
%
nat
.
{
iNext
.
iExists
(
o
+
1
)
%
nat
,
n
'
%
nat
.
iFrame
.
rewrite
Nat2Z
.
inj_add
.
iFrame
.
rewrite
Nat2Z
.
inj_add
.
iFrame
.
iLeft
;
by
iFrame
.
}
iFrame
.
iLeft
;
by
iFrame
.
}
iVsIntro
.
by
wp_if
.
iVsIntro
.
by
wp_if
.
-
wp_cas_fail
.
iVs
(
"Hclose"
with
"[Hl Hr]"
).
-
wp_cas_fail
.
iVs
(
"Hclose"
with
"[Hl
o' Hln'
Hr]"
).
{
iNext
.
iExists
o
'
,
n
'
.
by
iFrame
.
}
{
iNext
.
iExists
o
'
,
n
'
.
by
iFrame
.
}
iVsIntro
.
wp_if
.
by
iApply
(
"IH"
with
"Hγ HR"
).
iVsIntro
.
wp_if
.
by
iApply
(
"IH"
with
"Hγ HR"
).
Qed
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment