Skip to content
Snippets Groups Projects
Commit 35ac5e8e authored by Ralf Jung's avatar Ralf Jung
Browse files

barrier: strive for consistency between barrierGF and the inGF assumptions;...

barrier: strive for consistency between barrierGF and the inGF assumptions; also change some instance names
parent 0bde28f7
No related branches found
No related tags found
No related merge requests found
...@@ -125,14 +125,14 @@ End barrier_proto. ...@@ -125,14 +125,14 @@ End barrier_proto.
Import barrier_proto. Import barrier_proto.
(* The functors we need. *) (* The functors we need. *)
Definition barrierGFs : iFunctors := [stsGF sts; agreeF]. Definition barrierGF : iFunctors := [stsGF sts; agreeF].
(** Now we come to the Iris part of the proof. *) (** Now we come to the Iris part of the proof. *)
Section proof. Section proof.
Context {Σ : iFunctorG} (N : namespace). Context {Σ : iFunctorG} (N : namespace).
Context `{heapG Σ} (heapN : namespace). Context `{heapG Σ} (heapN : namespace).
Context `{stsG heap_lang Σ sts}. (* These are exactly the elements of barrierGF *)
Context `{savedPropG heap_lang Σ}. Context `{inGF heap_lang Σ (stsGF sts)} `{inGF heap_lang Σ agreeF}.
Local Hint Immediate i_states_closed low_states_closed : sts. Local Hint Immediate i_states_closed low_states_closed : sts.
Local Hint Resolve signal_step wait_step split_step : sts. Local Hint Resolve signal_step wait_step split_step : sts.
......
...@@ -26,7 +26,7 @@ Section client. ...@@ -26,7 +26,7 @@ Section client.
End client. End client.
Section ClosedProofs. Section ClosedProofs.
Definition Σ : iFunctorG := #[ heapGF ; barrierGFs ]. Definition Σ : iFunctorG := #[ heapGF ; barrierGF ].
Notation iProp := (iPropG heap_lang Σ). Notation iProp := (iPropG heap_lang Σ).
Lemma client_safe_closed σ : {{ ownP σ : iProp }} client {{ λ v, True }}. Lemma client_safe_closed σ : {{ ownP σ : iProp }} client {{ λ v, True }}.
......
...@@ -5,7 +5,7 @@ Import uPred. ...@@ -5,7 +5,7 @@ Import uPred.
Notation savedPropG Λ Σ := Notation savedPropG Λ Σ :=
(inG Λ Σ (agreeRA (laterC (iPreProp Λ (globalF Σ))))). (inG Λ Σ (agreeRA (laterC (iPreProp Λ (globalF Σ))))).
Instance savedPropG_inGF `{inGF Λ Σ agreeF} : savedPropG Λ Σ. Instance inGF_savedPropG `{inGF Λ Σ agreeF} : savedPropG Λ Σ.
Proof. apply: inGF_inG. Qed. Proof. apply: inGF_inG. Qed.
Definition saved_prop_own `{savedPropG Λ Σ} Definition saved_prop_own `{savedPropG Λ Σ}
......
...@@ -9,7 +9,7 @@ Class stsG Λ Σ (sts : stsT) := StsG { ...@@ -9,7 +9,7 @@ Class stsG Λ Σ (sts : stsT) := StsG {
Coercion sts_inG : stsG >-> inG. Coercion sts_inG : stsG >-> inG.
Definition stsGF (sts : stsT) : iFunctor := constF (stsRA sts). Definition stsGF (sts : stsT) : iFunctor := constF (stsRA sts).
Instance stsGF_inGF sts `{inGF Λ Σ (stsGF sts)} Instance inGF_stsG sts `{inGF Λ Σ (stsGF sts)}
`{Inhabited (sts.state sts)} : stsG Λ Σ sts. `{Inhabited (sts.state sts)} : stsG Λ Σ sts.
Proof. split; try apply _. apply: inGF_inG. Qed. Proof. split; try apply _. apply: inGF_inG. Qed.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment