Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris-coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Dan Frumin
iris-coq
Commits
19e70e9e
Commit
19e70e9e
authored
8 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
make the two proofs of contradictions more similar to each other
parent
1c5a85f0
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
program_logic/counter_examples.v
+28
-39
28 additions, 39 deletions
program_logic/counter_examples.v
with
28 additions
and
39 deletions
program_logic/counter_examples.v
+
28
−
39
View file @
19e70e9e
...
...
@@ -14,49 +14,38 @@ Module savedprop. Section savedprop.
Hypothesis
sprop_persistent
:
∀
i
P
,
PersistentP
(
saved
i
P
).
Hypothesis
sprop_alloc_dep
:
∀
(
P
:
sprop
→
iProp
),
True
=
r
=>
(
∃
i
,
saved
i
(
P
i
)).
Hypothesis
sprop_agree
:
∀
i
P
Q
,
saved
i
P
∧
saved
i
Q
⊢
P
↔
Q
.
Hypothesis
sprop_agree
:
∀
i
P
Q
,
saved
i
P
∧
saved
i
Q
⊢
□
(
P
↔
Q
)
.
(
*
Self
-
contradicting
assertions
are
inconsistent
*
)
Lemma
no_self_contradiction
P
`
{!
PersistentP
P
}
:
□
(
P
↔
¬
P
)
⊢
False
.
Proof
.
iIntros
"#[H1 H2]"
.
iAssert
P
as
"#HP"
.
{
iApply
"H2"
.
iIntros
"!# #HP"
.
by
iApply
(
"H1"
with
"[#]"
).
}
by
iApply
(
"H1"
with
"[#]"
).
Qed
.
(
**
A
bad
recursive
reference
:
"Assertion with name [i] does not hold"
*
)
Definition
A
(
i
:
sprop
)
:
iProp
:=
∃
P
,
¬
P
★
saved
i
P
.
Lemma
A_alloc
:
True
=
r
=>
∃
i
,
saved
i
(
A
i
).
Proof
.
by
apply
sprop_alloc_dep
.
Qed
.
(
*
"Assertion with name [i]"
is
equivalent
to
any
assertion
P
s
.
t
.
[
saved
i
P
]
*
)
Definition
A
(
i
:
sprop
)
:
iProp
:=
∃
P
,
saved
i
P
★
□
P
.
Lemma
saved_is_A
i
P
`
{!
PersistentP
P
}
:
saved
i
P
⊢
□
(
A
i
↔
P
).
Lemma
saved_NA
i
:
saved
i
(
A
i
)
⊢
¬
A
i
.
Proof
.
iIntros
"#HS !#"
.
iSplit
.
-
iDestruct
1
as
(
Q
)
"[#HSQ HQ]"
.
iApply
(
sprop_agree
i
P
Q
with
"[]"
);
eauto
.
-
iIntros
"#HP"
.
iExists
P
.
by
iSplit
.
iIntros
"#Hs !# #HA"
.
iPoseProof
"HA"
as
"HA'"
.
iDestruct
"HA'"
as
(
P
)
"[#HNP HsP]"
.
iApply
"HNP"
.
iDestruct
(
sprop_agree
i
P
(
A
i
)
with
"[]"
)
as
"#[_ HP]"
.
{
eauto
.
}
iApply
"HP"
.
done
.
Qed
.
(
*
Define
[
Q
i
]
to
be
"negated assertion with name [i]"
.
Show
that
this
implies
that
assertion
with
name
[
i
]
is
equivalent
to
its
own
negation
.
*
)
Definition
Q
i
:=
saved
i
(
¬
A
i
).
Lemma
Q_self_contradiction
i
:
Q
i
⊢
□
(
A
i
↔
¬
A
i
).
Proof
.
iIntros
"#HQ !#"
.
by
iApply
(
saved_is_A
i
(
¬
A
i
)).
Qed
.
(
*
We
can
obtain
such
a
[
Q
i
].
*
)
Lemma
make_Q
:
True
=
r
=>
∃
i
,
Q
i
.
Proof
.
apply
sprop_alloc_dep
.
Qed
.
(
*
Put
together
all
the
pieces
to
derive
a
contradiction
.
*
)
Lemma
rvs_false
:
(
True
:
uPred
M
)
=
r
=>
False
.
Lemma
saved_A
i
:
saved
i
(
A
i
)
⊢
A
i
.
Proof
.
rewrite
make_Q
.
apply
uPred
.
rvs_mono
.
iDestruct
1
as
(
i
)
"HQ
"
.
iApply
(
no_self_contradiction
(
A
i
)).
by
iApply
Q_self_contradiction
.
iIntros
"#Hs"
.
iExists
(
A
i
).
iFrame
"#
"
.
by
iApply
saved_NA
.
Qed
.
Lemma
contradiction
:
False
.
Proof
.
apply
(
@
uPred
.
adequacy
M
False
1
);
simpl
.
rewrite
-
uPred
.
later_intro
.
apply
rvs_false
.
iIntros
""
.
iVs
A_alloc
as
(
i
)
"#H"
.
iPoseProof
(
saved_NA
with
"H"
)
as
"HN"
.
iVsIntro
.
iNext
.
iApply
"HN"
.
iApply
saved_A
.
done
.
Qed
.
End
savedprop
.
End
savedprop
.
(
**
This
proves
that
we
need
the
▷
when
opening
invariants
.
*
)
...
...
@@ -180,26 +169,26 @@ Module inv. Section inv.
Lemma
A_alloc
:
True
⊢
pvs
M1
(
∃
i
,
saved
i
(
A
i
)).
Proof
.
by
apply
saved_alloc
.
Qed
.
Lemma
alloc
_NA
i
:
saved
i
(
A
i
)
⊢
¬
A
i
.
Lemma
saved
_NA
i
:
saved
i
(
A
i
)
⊢
¬
A
i
.
Proof
.
iIntros
"#Hi !# #HA"
.
iPoseProof
"HA"
as
"HA'"
.
iDestruct
"HA'"
as
(
P
)
"#[HNP Hi']"
.
iVs
(
saved_cast
i
with
"[]"
)
as
"HP"
.
{
iSplit
;
first
iExact
"Hi"
.
by
iFrame
"#"
.
}
iVs
(
saved_cast
i
(
A
i
)
P
with
"[]"
)
as
"HP"
.
{
eauto
.
}
by
iApply
"HNP"
.
Qed
.
Lemma
alloc
_A
i
:
saved
i
(
A
i
)
⊢
A
i
.
Lemma
saved
_A
i
:
saved
i
(
A
i
)
⊢
A
i
.
Proof
.
iIntros
"#Hi"
.
i
PoseProof
(
alloc_NA
with
"Hi"
)
as
"HNA
"
.
iExists
(
A
i
).
by
iFrame
"#"
.
iIntros
"#Hi"
.
i
Exists
(
A
i
).
iFrame
"#
"
.
by
iApply
saved_NA
.
Qed
.
Lemma
contradiction
:
False
.
Proof
.
apply
soundness
.
iIntros
""
.
iVs
A_alloc
as
(
i
)
"#H"
.
iPoseProof
(
alloc
_NA
with
"H"
)
as
"HN"
.
iApply
"HN"
.
iApply
alloc
_A
.
done
.
iPoseProof
(
saved
_NA
with
"H"
)
as
"HN"
.
iApply
"HN"
.
iApply
saved
_A
.
done
.
Qed
.
End
inv
.
End
inv
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment