Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Dan Frumin
iris-coq
Commits
0502f30b
Commit
0502f30b
authored
Jun 18, 2016
by
Robbert Krebbers
Browse files
Remove lviewshifts.v and turn them into notations.
parent
69eefa4c
Changes
7
Hide whitespace changes
Inline
Side-by-side
_CoqProject
View file @
0502f30b
...
...
@@ -68,7 +68,6 @@ program_logic/ownership.v
program_logic/weakestpre.v
program_logic/weakestpre_fix.v
program_logic/pviewshifts.v
program_logic/lviewshifts.v
program_logic/resources.v
program_logic/hoare.v
program_logic/language.v
...
...
program_logic/ectx_lifting.v
View file @
0502f30b
...
...
@@ -23,7 +23,7 @@ Lemma wp_lift_head_step E1 E2
head_reducible
e1
σ
1
→
(
∀
e2
σ
2
ef
,
head_step
e1
σ
1
e2
σ
2
ef
→
φ
e2
σ
2
ef
)
→
(
|={
E1
,
E2
}=>
▷
ownP
σ
1
★
▷
∀
e2
σ
2
ef
,
(
■
φ
e2
σ
2
ef
∧
ownP
σ
2
)
-
★
|
={
E2
,
E1
}=
>
WP
e2
@
E1
{{
Φ
}}
★
wp_fork
ef
)
(
■
φ
e2
σ
2
ef
∧
ownP
σ
2
)
={
E2
,
E1
}=
★
WP
e2
@
E1
{{
Φ
}}
★
wp_fork
ef
)
⊢
WP
e1
@
E1
{{
Φ
}}
.
Proof
.
eauto
using
wp_lift_step
.
Qed
.
...
...
program_logic/invariants.v
View file @
0502f30b
From
iris
.
program_logic
Require
Import
ownership
.
From
iris
.
program_logic
Require
Export
namespaces
lviewshifts
.
From
iris
.
program_logic
Require
Export
namespaces
.
From
iris
.
proofmode
Require
Import
pviewshifts
.
Import
uPred
.
...
...
program_logic/lifting.v
View file @
0502f30b
...
...
@@ -23,7 +23,7 @@ Lemma wp_lift_step E1 E2
reducible
e1
σ
1
→
(
∀
e2
σ
2
ef
,
prim_step
e1
σ
1
e2
σ
2
ef
→
φ
e2
σ
2
ef
)
→
(
|={
E1
,
E2
}=>
▷
ownP
σ
1
★
▷
∀
e2
σ
2
ef
,
(
■
φ
e2
σ
2
ef
∧
ownP
σ
2
)
-
★
|
={
E2
,
E1
}=
>
WP
e2
@
E1
{{
Φ
}}
★
wp_fork
ef
)
(
■
φ
e2
σ
2
ef
∧
ownP
σ
2
)
={
E2
,
E1
}=
★
WP
e2
@
E1
{{
Φ
}}
★
wp_fork
ef
)
⊢
WP
e1
@
E1
{{
Φ
}}
.
Proof
.
intros
?
He
Hsafe
Hstep
.
rewrite
pvs_eq
wp_eq
.
...
...
program_logic/lviewshifts.v
deleted
100644 → 0
View file @
69eefa4c
From
iris
.
program_logic
Require
Export
pviewshifts
.
Import
uPred
.
(
*
Some
notation
for
linear
view
shifts
.
*
)
Definition
lvs
{
Λ
Σ
}
(
E1
E2
:
coPset
)
(
P
Q
:
iProp
Λ
Σ
)
:
iProp
Λ
Σ
:=
(
P
-
★
|={
E1
,
E2
}=>
Q
)
%
I
.
Arguments
lvs
{
_
_
}
_
_
_
%
I
_
%
I
.
Instance:
Params
(
@
lvs
)
4.
Notation
"P ={ E1 , E2 }=★ Q"
:=
(
lvs
E1
E2
P
%
I
Q
%
I
)
(
at
level
99
,
E1
,
E2
at
level
50
,
Q
at
level
200
,
format
"P ={ E1 , E2 }=★ Q"
)
:
uPred_scope
.
Notation
"P ={ E1 , E2 }=★ Q"
:=
(
True
⊢
(
P
={
E1
,
E2
}=
★
Q
)
%
I
)
(
at
level
99
,
E1
,
E2
at
level
50
,
Q
at
level
200
,
format
"P ={ E1 , E2 }=★ Q"
)
:
C_scope
.
Notation
"P ={ E }=★ Q"
:=
(
P
={
E
,
E
}=
★
Q
)
%
I
(
at
level
99
,
E
at
level
50
,
Q
at
level
200
,
format
"P ={ E }=★ Q"
)
:
uPred_scope
.
Notation
"P ={ E }=★ Q"
:=
(
True
⊢
(
P
={
E
}=
★
Q
)
%
I
)
(
at
level
99
,
E
at
level
50
,
Q
at
level
200
,
format
"P ={ E }=★ Q"
)
:
C_scope
.
(
*
TODO
:
Also
prove
some
lemmas
.
*
)
program_logic/pviewshifts.v
View file @
0502f30b
...
...
@@ -45,6 +45,13 @@ Notation "P ={ E1 , E2 }=> Q" := (P ⊢ |={E1,E2}=> Q)
Notation
"P ={ E }=> Q"
:=
(
P
⊢
|={
E
}=>
Q
)
(
at
level
99
,
E
at
level
50
,
Q
at
level
200
,
only
parsing
)
:
C_scope
.
Notation
"P ={ E1 , E2 }=★ Q"
:=
(
P
-
★
|={
E1
,
E2
}=>
Q
)
%
I
(
at
level
99
,
E1
,
E2
at
level
50
,
Q
at
level
200
,
format
"P ={ E1 , E2 }=★ Q"
)
:
uPred_scope
.
Notation
"P ={ E }=★ Q"
:=
(
P
={
E
,
E
}=
★
Q
)
%
I
(
at
level
99
,
E
at
level
50
,
Q
at
level
200
,
format
"P ={ E }=★ Q"
)
:
uPred_scope
.
Section
pvs
.
Context
{
Λ
:
language
}
{
Σ
:
iFunctor
}
.
Implicit
Types
P
Q
:
iProp
Λ
Σ
.
...
...
tests/proofmode.v
View file @
0502f30b
...
...
@@ -97,7 +97,7 @@ Section iris.
Lemma
demo_8
N
E
P
Q
R
:
nclose
N
⊆
E
→
(
True
-
★
P
-
★
inv
N
Q
-
★
True
-
★
R
)
⊢
P
-
★
▷
Q
-
★
|
={
E
}=
>
R
.
(
True
-
★
P
-
★
inv
N
Q
-
★
True
-
★
R
)
⊢
P
-
★
▷
Q
={
E
}=
★
R
.
Proof
.
iIntros
{?}
"H HP HQ"
.
iApply
(
"H"
with
"[#] HP |==>[HQ] |==>"
).
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment