Newer
Older
From heap_lang Require Export lifting.
From algebra Require Import upred_big_op.
From program_logic Require Export invariants ghost_ownership.
From program_logic Require Import ownership auth.
Import uPred.
(* TODO: The entire construction could be generalized to arbitrary languages that have
a finmap as their state. Or maybe even beyond "as their state", i.e. arbitrary
predicates over finmaps instead of just ownP. *)
Definition heapRA := mapRA loc (exclRA (leibnizC val)).
Class heapG Σ := HeapG {
heap_inG : inG heap_lang Σ (authRA heapRA);
heap_name : gname
}.
Instance heap_authG `{i : heapG Σ} : authG heap_lang Σ heapRA :=
{| auth_inG := heap_inG |}.
Definition to_heap : state → heapRA := fmap Excl.
Definition of_heap : heapRA → state := omap (maybe Excl).
Definition heap_mapsto `{heapG Σ} (l : loc) (v: val) : iPropG heap_lang Σ :=
auth_own heap_name {[ l := Excl v ]}.
Definition heap_inv `{i : heapG Σ} (h : heapRA) : iPropG heap_lang Σ :=
ownP (of_heap h).
Definition heap_ctx `{i : heapG Σ} (N : namespace) : iPropG heap_lang Σ :=
auth_ctx heap_name N heap_inv.
Notation "l ↦ v" := (heap_mapsto l v) (at level 20) : uPred_scope.
Context {Σ : iFunctorG}.
Implicit Types N : namespace.
Implicit Types P : iPropG heap_lang Σ.
Implicit Types σ : state.
Implicit Types h g : heapRA.
(** Conversion to heaps and back *)
Global Instance of_heap_proper : Proper ((≡) ==> (=)) of_heap.
Proof. by intros ??; fold_leibniz=>->. Qed.
Lemma from_to_heap σ : of_heap (to_heap σ) = σ.
Proof.
apply map_eq=>l. rewrite lookup_omap lookup_fmap. by case (σ !! l).
Qed.
Lemma to_heap_valid σ : ✓ to_heap σ.
Proof. intros n l. rewrite lookup_fmap. by case (σ !! l). Qed.
Lemma of_heap_insert l v h : of_heap (<[l:=Excl v]> h) = <[l:=v]> (of_heap h).
Proof. by rewrite /of_heap -(omap_insert _ _ _ (Excl v)). Qed.
Lemma to_heap_insert l v σ : to_heap (<[l:=v]> σ) = <[l:=Excl v]> (to_heap σ).
Proof. by rewrite /to_heap -fmap_insert. Qed.
Lemma of_heap_None h l :
✓ h → of_heap h !! l = None → h !! l = None ∨ h !! l ≡ Some ExclUnit.
move=> /(_ O l). rewrite /of_heap lookup_omap.
by case: (h !! l)=> [[]|]; auto.
Qed.
Lemma heap_singleton_inv_l h l v :
✓ ({[l := Excl v]} ⋅ h) → h !! l = None ∨ h !! l ≡ Some ExclUnit.
Proof.
move=> /(_ O l). rewrite lookup_op lookup_singleton.
by case: (h !! l)=> [[]|]; auto.
Qed.
authG heap_lang Σ heapRA →
ownP σ ⊑ pvs N N (∃ (_ : heapG Σ), heap_ctx N ∧ Π★{map σ} heap_mapsto).
rewrite -{1}(from_to_heap σ). etransitivity.
{ apply (auth_alloc (ownP ∘ of_heap) N (to_heap σ)), to_heap_valid. }
apply pvs_mono, exist_elim=> γ.
rewrite -(exist_intro (HeapG _ _ γ)); apply and_mono_r.
induction σ as [|l v σ Hl IH] using map_ind.
{ rewrite big_sepM_empty; apply True_intro. }
rewrite to_heap_insert big_sepM_insert //.
rewrite (map_insert_singleton_op (to_heap σ));
last rewrite lookup_fmap Hl; auto.
by rewrite auto_own_op IH.
Context `{heapG Σ}.
(** Propers *)
Global Instance heap_inv_proper : Proper ((≡) ==> (≡)) heap_inv.
Proof. intros h1 h2. by fold_leibniz=> ->. Qed.
(** General properties of mapsto *)
Lemma heap_mapsto_disjoint l v1 v2 : (l ↦ v1 ★ l ↦ v2)%I ⊑ False.
Proof.
rewrite /heap_mapsto -auto_own_op auto_own_valid map_op_singleton.
rewrite map_validI (forall_elim l) lookup_singleton.
by rewrite option_validI excl_validI.
Qed.
(** Weakest precondition *)
Lemma wp_alloc N E e v P Q :
to_val e = Some v → nclose N ⊆ E →
P ⊑ (▷ ∀ l, l ↦ v -★ Q (LocV l)) →
rewrite /heap_ctx /heap_inv /heap_mapsto=> ?? Hctx HP.
transitivity (pvs E E (auth_own heap_name ∅ ★ P))%I.
{ by rewrite -pvs_frame_r -(auth_empty _ E) left_id. }
apply wp_strip_pvs, (auth_fsa heap_inv (wp_fsa (Alloc e)))
with N heap_name ∅; simpl; eauto with I.
rewrite -later_intro. apply sep_mono_r,forall_intro=> h; apply wand_intro_l.
rewrite -assoc left_id; apply const_elim_sep_l=> ?.
rewrite {1}[(▷ownP _)%I]pvs_timeless pvs_frame_r; apply wp_strip_pvs.
rewrite /wp_fsa -(wp_alloc_pst _ (of_heap h)) //.
apply sep_mono_r; rewrite HP; apply later_mono.
rewrite always_and_sep_l -assoc; apply const_elim_sep_l=> ?.
rewrite -(exist_intro (op {[ l := Excl v ]})).
repeat erewrite <-exist_intro by apply _; simpl.
rewrite -of_heap_insert left_id right_id !assoc.
rewrite -(map_insert_singleton_op h); last by apply of_heap_None.
rewrite const_equiv ?left_id; last by apply (map_insert_valid h).
apply later_intro.
Qed.
Lemma wp_load N E l v P Q :
P ⊑ (▷ l ↦ v ★ ▷ (l ↦ v -★ Q v)) →
rewrite /heap_ctx /heap_inv /heap_mapsto=>HN ? HPQ.
apply (auth_fsa' heap_inv (wp_fsa _) id)
with N heap_name {[ l := Excl v ]}; simpl; eauto with I.
rewrite HPQ{HPQ}; apply sep_mono_r, forall_intro=> h; apply wand_intro_l.
rewrite -assoc; apply const_elim_sep_l=> ?.
rewrite {1}[(▷ownP _)%I]pvs_timeless pvs_frame_r; apply wp_strip_pvs.
rewrite -(wp_load_pst _ (<[l:=v]>(of_heap h))) ?lookup_insert //.
rewrite const_equiv // left_id.
rewrite -(map_insert_singleton_op h); last by eapply heap_singleton_inv_l.
apply sep_mono_r, later_mono, wand_intro_l. by rewrite -later_intro.
Lemma wp_store N E l v' e v P Q :
to_val e = Some v → nclose N ⊆ E →
P ⊑ (▷ l ↦ v' ★ ▷ (l ↦ v -★ Q (LitV LitUnit))) →
rewrite /heap_ctx /heap_inv /heap_mapsto=>? HN ? HPQ.
apply (auth_fsa' heap_inv (wp_fsa _) (alter (λ _, Excl v) l))
with N heap_name {[ l := Excl v' ]}; simpl; eauto with I.
rewrite HPQ{HPQ}; apply sep_mono_r, forall_intro=> h; apply wand_intro_l.
rewrite -assoc; apply const_elim_sep_l=> ?.
rewrite {1}[(▷ownP _)%I]pvs_timeless pvs_frame_r; apply wp_strip_pvs.
rewrite -(wp_store_pst _ (<[l:=v']>(of_heap h))) ?lookup_insert //.
rewrite /heap_inv alter_singleton insert_insert.
rewrite -!(map_insert_singleton_op h); try by eapply heap_singleton_inv_l.
rewrite -!of_heap_insert const_equiv;
last (split; [naive_solver|by eapply map_insert_valid, cmra_valid_op_r]).
apply sep_mono_r, later_mono, wand_intro_l. by rewrite left_id -later_intro.
Lemma wp_cas_fail N E l v' e1 v1 e2 v2 P Q :
to_val e1 = Some v1 → to_val e2 = Some v2 → v' ≠ v1 →
nclose N ⊆ E →
P ⊑ (▷ l ↦ v' ★ ▷ (l ↦ v' -★ Q (LitV (LitBool false)))) →
rewrite /heap_ctx /heap_inv /heap_mapsto=>??? HN ? HPQ.
apply (auth_fsa' heap_inv (wp_fsa _) id)
with N heap_name {[ l := Excl v' ]}; simpl; eauto 10 with I.
rewrite HPQ{HPQ}; apply sep_mono_r, forall_intro=> h; apply wand_intro_l.
rewrite -assoc; apply const_elim_sep_l=> ?.
rewrite {1}[(▷ownP _)%I]pvs_timeless pvs_frame_r; apply wp_strip_pvs.
rewrite -(wp_cas_fail_pst _ (<[l:=v']>(of_heap h))) ?lookup_insert //.
rewrite const_equiv // left_id.
rewrite -(map_insert_singleton_op h); last by eapply heap_singleton_inv_l.
apply sep_mono_r, later_mono, wand_intro_l. by rewrite -later_intro.
Lemma wp_cas_suc N E l e1 v1 e2 v2 P Q :
to_val e1 = Some v1 → to_val e2 = Some v2 →
nclose N ⊆ E →
P ⊑ (▷ l ↦ v1 ★ ▷ (l ↦ v2 -★ Q (LitV (LitBool true)))) →
rewrite /heap_ctx /heap_inv /heap_mapsto=> ?? HN ? HPQ.
apply (auth_fsa' heap_inv (wp_fsa _) (alter (λ _, Excl v2) l))
with N heap_name {[ l := Excl v1 ]}; simpl; eauto 10 with I.
rewrite HPQ{HPQ}; apply sep_mono_r, forall_intro=> h; apply wand_intro_l.
rewrite -assoc; apply const_elim_sep_l=> ?.
rewrite {1}[(▷ownP _)%I]pvs_timeless pvs_frame_r; apply wp_strip_pvs.
rewrite -(wp_cas_suc_pst _ (<[l:=v1]>(of_heap h))) ?lookup_insert //.
rewrite /heap_inv alter_singleton insert_insert.
rewrite -!(map_insert_singleton_op h); try by eapply heap_singleton_inv_l.
rewrite -!of_heap_insert const_equiv;
last (split; [naive_solver|by eapply map_insert_valid, cmra_valid_op_r]).
apply sep_mono_r, later_mono, wand_intro_l. by rewrite left_id -later_intro.
End heap.