Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
lambda-rust
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Daniël Louwrink
lambda-rust
Commits
e795b65a
Commit
e795b65a
authored
5 years ago
by
Daniël Louwrink
Browse files
Options
Downloads
Patches
Plain Diff
add SB to lang semantics
parent
b9151c61
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/lang/lang.v
+46
-32
46 additions, 32 deletions
theories/lang/lang.v
with
46 additions
and
32 deletions
theories/lang/lang.v
+
46
−
32
View file @
e795b65a
...
@@ -241,27 +241,30 @@ Inductive head_step : expr → state → list Empty_set → expr → state → l
...
@@ -241,27 +241,30 @@ Inductive head_step : expr → state → list Empty_set → expr → state → l
Closed
(
f
:
b
:
xl
+
b
+
[])
e
→
Closed
(
f
:
b
:
xl
+
b
+
[])
e
→
subst_l
(
f
::
xl
)
(
Rec
f
xl
e
::
el
)
e
=
Some
e'
→
subst_l
(
f
::
xl
)
(
Rec
f
xl
e
::
el
)
e
=
Some
e'
→
head_step
(
App
(
Rec
f
xl
e
)
el
)
σ
[]
e'
σ
[]
head_step
(
App
(
Rec
f
xl
e
)
el
)
σ
[]
e'
σ
[]
|
ReadScS
l
tg
n
v
σ
stbor
:
|
ReadScS
l
tg
n
v
σ
stbor
1
stbor2
:
σ
!!
l
=
Some
(
RSt
n
,
v
)
→
σ
!!
l
=
Some
(
RSt
n
,
v
)
→
head_step
(
Read
ScOrd
(
Lit
$
LitLoc
l
tg
))
(
MkSt
σ
stbor
)
[]
(
of_val
v
)
(
MkSt
σ
stbor
)
[]
stbor_step
stbor1
(
StborReadEv
l
tg
1
)
stbor2
→
head_step
(
Read
ScOrd
(
Lit
$
LitLoc
l
tg
))
(
MkSt
σ
stbor1
)
[]
(
of_val
v
)
(
MkSt
σ
stbor2
)
[]
|
ReadNa1S
l
tg
n
v
σ
stbor
:
|
ReadNa1S
l
tg
n
v
σ
stbor
:
σ
!!
l
=
Some
(
RSt
n
,
v
)
→
σ
!!
l
=
Some
(
RSt
n
,
v
)
→
head_step
(
Read
Na1Ord
(
Lit
$
LitLoc
l
tg
))
(
MkSt
σ
stbor
)
head_step
(
Read
Na1Ord
(
Lit
$
LitLoc
l
tg
))
(
MkSt
σ
stbor
)
[]
[]
(
Read
Na2Ord
(
Lit
$
LitLoc
l
tg
))
(
MkSt
(
<
[
l
:=(
RSt
$
S
n
,
v
)]
>
σ
)
stbor
)
(
Read
Na2Ord
(
Lit
$
LitLoc
l
tg
))
(
MkSt
(
<
[
l
:=(
RSt
$
S
n
,
v
)]
>
σ
)
stbor
)
[]
[]
|
ReadNa2S
l
tg
n
v
σ
stbor
:
|
ReadNa2S
l
tg
n
v
σ
stbor
1
stbor2
:
σ
!!
l
=
Some
(
RSt
$
S
n
,
v
)
→
σ
!!
l
=
Some
(
RSt
$
S
n
,
v
)
→
head_step
(
Read
Na2Ord
(
Lit
$
LitLoc
l
tg
))
(
MkSt
σ
stbor
)
stbor_step
stbor1
(
StborReadEv
l
tg
1
)
stbor2
→
head_step
(
Read
Na2Ord
(
Lit
$
LitLoc
l
tg
))
(
MkSt
σ
stbor1
)
[]
[]
(
of_val
v
)
(
MkSt
(
<
[
l
:=(
RSt
n
,
v
)]
>
σ
)
stbor
)
(
of_val
v
)
(
MkSt
(
<
[
l
:=(
RSt
n
,
v
)]
>
σ
)
stbor
2
)
[]
[]
|
WriteScS
l
tg
e
v
v'
σ
stbor
:
|
WriteScS
l
tg
e
v
v'
σ
stbor
1
stbor2
:
to_val
e
=
Some
v
→
to_val
e
=
Some
v
→
σ
!!
l
=
Some
(
RSt
0
,
v'
)
→
σ
!!
l
=
Some
(
RSt
0
,
v'
)
→
head_step
(
Write
ScOrd
(
Lit
$
LitLoc
l
tg
)
e
)
(
MkSt
σ
stbor
)
stbor_step
stbor1
(
StborWriteEv
l
tg
1
)
stbor2
→
head_step
(
Write
ScOrd
(
Lit
$
LitLoc
l
tg
)
e
)
(
MkSt
σ
stbor1
)
[]
[]
(
Lit
LitPoison
)
(
MkSt
(
<
[
l
:=(
RSt
0
,
v
)]
>
σ
)
stbor
)
(
Lit
LitPoison
)
(
MkSt
(
<
[
l
:=(
RSt
0
,
v
)]
>
σ
)
stbor
2
)
[]
[]
|
WriteNa1S
l
tg
e
v
v'
σ
stbor
:
|
WriteNa1S
l
tg
e
v
v'
σ
stbor
:
to_val
e
=
Some
v
→
to_val
e
=
Some
v
→
...
@@ -270,25 +273,28 @@ Inductive head_step : expr → state → list Empty_set → expr → state → l
...
@@ -270,25 +273,28 @@ Inductive head_step : expr → state → list Empty_set → expr → state → l
[]
[]
(
Write
Na2Ord
(
Lit
$
LitLoc
l
tg
)
e
)
(
MkSt
(
<
[
l
:=(
WSt
,
v'
)]
>
σ
)
stbor
)
(
Write
Na2Ord
(
Lit
$
LitLoc
l
tg
)
e
)
(
MkSt
(
<
[
l
:=(
WSt
,
v'
)]
>
σ
)
stbor
)
[]
[]
|
WriteNa2S
l
tg
e
v
v'
σ
stbor
:
|
WriteNa2S
l
tg
e
v
v'
σ
stbor
1
stbor2
:
to_val
e
=
Some
v
→
to_val
e
=
Some
v
→
σ
!!
l
=
Some
(
WSt
,
v'
)
→
σ
!!
l
=
Some
(
WSt
,
v'
)
→
head_step
(
Write
Na2Ord
(
Lit
$
LitLoc
l
tg
)
e
)
(
MkSt
σ
stbor
)
stbor_step
stbor1
(
StborWriteEv
l
tg
1
)
stbor2
→
head_step
(
Write
Na2Ord
(
Lit
$
LitLoc
l
tg
)
e
)
(
MkSt
σ
stbor1
)
[]
[]
(
Lit
LitPoison
)
(
MkSt
(
<
[
l
:=(
RSt
0
,
v
)]
>
σ
)
stbor
)
(
Lit
LitPoison
)
(
MkSt
(
<
[
l
:=(
RSt
0
,
v
)]
>
σ
)
stbor
2
)
[]
[]
|
CasFailS
l
tg
n
e1
lit1
e2
lit2
litl
σ
stbor
:
|
CasFailS
l
tg
n
e1
lit1
e2
lit2
litl
σ
stbor
1
stbor2
:
to_val
e1
=
Some
$
LitV
lit1
→
to_val
e2
=
Some
$
LitV
lit2
→
to_val
e1
=
Some
$
LitV
lit1
→
to_val
e2
=
Some
$
LitV
lit2
→
σ
!!
l
=
Some
(
RSt
n
,
LitV
litl
)
→
σ
!!
l
=
Some
(
RSt
n
,
LitV
litl
)
→
lit_neq
lit1
litl
→
lit_neq
lit1
litl
→
head_step
(
CAS
(
Lit
$
LitLoc
l
tg
)
e1
e2
)
(
MkSt
σ
stbor
)
[]
(
Lit
$
lit_of_bool
false
)
(
MkSt
σ
stbor
)
[]
stbor_step
stbor1
(
StborReadEv
l
tg
1
)
stbor2
→
|
CasSucS
l
tg
e1
lit1
e2
lit2
litl
σ
stbor
:
head_step
(
CAS
(
Lit
$
LitLoc
l
tg
)
e1
e2
)
(
MkSt
σ
stbor1
)
[]
(
Lit
$
lit_of_bool
false
)
(
MkSt
σ
stbor2
)
[]
|
CasSucS
l
tg
e1
lit1
e2
lit2
litl
σ
stbor1
stbor2
:
to_val
e1
=
Some
$
LitV
lit1
→
to_val
e2
=
Some
$
LitV
lit2
→
to_val
e1
=
Some
$
LitV
lit1
→
to_val
e2
=
Some
$
LitV
lit2
→
σ
!!
l
=
Some
(
RSt
0
,
LitV
litl
)
→
σ
!!
l
=
Some
(
RSt
0
,
LitV
litl
)
→
lit_eq
σ
lit1
litl
→
lit_eq
σ
lit1
litl
→
head_step
(
CAS
(
Lit
$
LitLoc
l
tg
)
e1
e2
)
(
MkSt
σ
stbor
)
stbor_step
stbor1
(
StborWriteEv
l
tg
1
)
stbor2
→
head_step
(
CAS
(
Lit
$
LitLoc
l
tg
)
e1
e2
)
(
MkSt
σ
stbor1
)
[]
[]
(
Lit
$
lit_of_bool
true
)
(
MkSt
(
<
[
l
:=(
RSt
0
,
LitV
lit2
)]
>
σ
)
stbor
)
(
Lit
$
lit_of_bool
true
)
(
MkSt
(
<
[
l
:=(
RSt
0
,
LitV
lit2
)]
>
σ
)
stbor
2
)
[]
[]
(* A succeeding CAS has to detect concurrent non-atomic read accesses, and
(* A succeeding CAS has to detect concurrent non-atomic read accesses, and
trigger UB if there is one. In lambdaRust, succeeding and failing CAS are
trigger UB if there is one. In lambdaRust, succeeding and failing CAS are
...
@@ -312,20 +318,27 @@ Inductive head_step : expr → state → list Empty_set → expr → state → l
...
@@ -312,20 +318,27 @@ Inductive head_step : expr → state → list Empty_set → expr → state → l
[]
[]
stuck_term
(
MkSt
σ
stbor
)
stuck_term
(
MkSt
σ
stbor
)
[]
[]
(* TODO: Right now the tag is always zero! *)
|
AllocS
n
l
tgnew
σ
stbor1
stbor2
:
|
AllocS
n
l
σ
stbor
:
0
<
n
→
0
<
n
→
(
∀
m
,
σ
!!
(
l
+
ₗ
m
)
=
None
)
→
(
∀
m
,
σ
!!
(
l
+
ₗ
m
)
=
None
)
→
head_step
(
Alloc
$
Lit
$
LitInt
n
)
(
MkSt
σ
stbor
)
stbor_step
stbor1
(
StborAllocEv
l
(
Z
.
to_nat
n
)
tgnew
)
stbor2
→
head_step
(
Alloc
$
Lit
$
LitInt
n
)
(
MkSt
σ
stbor1
)
[]
(
Lit
$
LitLoc
l
tgnew
)
(
MkSt
(
init_mem
l
(
Z
.
to_nat
n
)
σ
)
stbor2
)
[]
|
RetagS
interior
pkind
rkind
l
tgold
σ
stbor1
stbor2
tgnew
:
stbor_step
stbor1
(
StborRetagEv
l
tgold
interior
pkind
rkind
tgnew
)
stbor2
→
head_step
(
Retag
interior
pkind
rkind
$
Lit
$
LitLoc
l
tgold
)
(
MkSt
σ
stbor1
)
[]
[]
(
Lit
$
LitLoc
l
(
Tagged
0
%
nat
))
(
MkSt
(
init_mem
l
(
Z
.
to_nat
n
)
σ
)
stbor
)
(
Lit
$
LitLoc
l
tgnew
)
(
MkSt
σ
stbor
2
)
[]
[]
|
FreeS
n
l
tg
σ
stbor
:
|
FreeS
n
l
tg
σ
stbor
1
stbor2
:
0
<
n
→
0
<
n
→
(
∀
m
,
is_Some
(
σ
!!
(
l
+
ₗ
m
))
↔
0
≤
m
<
n
)
→
(
∀
m
,
is_Some
(
σ
!!
(
l
+
ₗ
m
))
↔
0
≤
m
<
n
)
→
head_step
(
Free
(
Lit
$
LitInt
n
)
(
Lit
$
LitLoc
l
tg
))
(
MkSt
σ
stbor
)
stbor_step
stbor1
(
StborDeallocEv
l
tg
(
Z
.
to_nat
n
))
stbor2
→
head_step
(
Free
(
Lit
$
LitInt
n
)
(
Lit
$
LitLoc
l
tg
))
(
MkSt
σ
stbor1
)
[]
[]
(
Lit
LitPoison
)
(
MkSt
(
free_mem
l
(
Z
.
to_nat
n
)
σ
)
stbor
)
(
Lit
LitPoison
)
(
MkSt
(
free_mem
l
(
Z
.
to_nat
n
)
σ
)
stbor
2
)
[]
[]
|
CaseS
i
el
e
σ
:
|
CaseS
i
el
e
σ
:
0
≤
i
→
0
≤
i
→
...
@@ -442,15 +455,16 @@ Proof.
...
@@ -442,15 +455,16 @@ Proof.
move
=>
/
(
help
_
_
∅
)
/=.
apply
is_fresh
.
move
=>
/
(
help
_
_
∅
)
/=.
apply
is_fresh
.
Qed
.
Qed
.
Lemma
alloc_fresh
n
σ
stbor
:
(* TODO: FIXME *)
let
l
:=
(
fresh_block
σ
,
0
)
in
(* Lemma alloc_fresh n σ stbor : *)
let
init
:=
repeat
(
LitV
$
LitInt
0
)
(
Z
.
to_nat
n
)
in
(* let l := (fresh_block σ, 0) in *)
0
<
n
→
(* let init := repeat (LitV $ LitInt 0) (Z.to_nat n) in *)
head_step
(
Alloc
$
Lit
$
LitInt
n
)
(
MkSt
σ
stbor
)
[]
(
Lit
$
LitLoc
l
(
Tagged
0
%
nat
))
(
MkSt
(
init_mem
l
(
Z
.
to_nat
n
)
σ
)
stbor
)
[]
.
(* 0 < n → *)
Proof
.
(* head_step (Alloc $ Lit $ LitInt n) (MkSt σ stbor) [] (Lit $ LitLoc l (Tagged 0%nat)) (MkSt (init_mem l (Z.to_nat n) σ) stbor) []. *)
intros
l
init
Hn
.
apply
AllocS
.
auto
.
(* Proof. *)
-
intros
i
.
apply
(
is_fresh_block
_
i
)
.
(* intros l init Hn. apply AllocS. auto. *)
Qed
.
(* - intros i. apply (is_fresh_block _ i). *)
(* Qed. *)
Lemma
lookup_free_mem_ne
σ
l
l'
n
:
l
.
1
≠
l'
.
1
→
free_mem
l
n
σ
!!
l'
=
σ
!!
l'
.
Lemma
lookup_free_mem_ne
σ
l
l'
n
:
l
.
1
≠
l'
.
1
→
free_mem
l
n
σ
!!
l'
=
σ
!!
l'
.
Proof
.
Proof
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment