Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris-coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Amin Timany
iris-coq
Commits
f1ea0187
Commit
f1ea0187
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Weakest pre-condition.
parent
d442538d
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
iris/weakestpre.v
+191
-0
191 additions, 0 deletions
iris/weakestpre.v
with
191 additions
and
0 deletions
iris/weakestpre.v
0 → 100644
+
191
−
0
View file @
f1ea0187
Require
Export
iris
.
pviewshifts
.
Require
Import
iris
.
wsat
.
Local
Hint
Extern
10
(_
≤
_)
=>
omega
.
Local
Hint
Extern
100
(
@
eq
coPset
_
_)
=>
eassumption
||
solve_elem_of
.
Local
Hint
Extern
100
(_
∉
_)
=>
solve_elem_of
.
Local
Hint
Extern
10
(
✓
{_}
_)
=>
repeat
match
goal
with
H
:
wsat
_
_
_
_
|
-
_
=>
apply
wsat_valid
in
H
end
;
solve_validN
.
Record
wp_go
{
Σ
}
(
E
:
coPset
)
(
Q
Qfork
:
iexpr
Σ
→
nat
→
res'
Σ
→
Prop
)
(
k
:
nat
)
(
rf
:
res'
Σ
)
(
e1
:
iexpr
Σ
)
(
σ1
:
istate
Σ
)
:=
{
wf_safe
:
∃
e2
σ2
ef
,
prim_step
e1
σ1
e2
σ2
ef
;
wp_step
e2
σ2
ef
:
prim_step
e1
σ1
e2
σ2
ef
→
∃
r2
r2'
,
wsat
k
E
σ2
(
r2
⋅
r2'
⋅
rf
)
∧
Q
e2
k
r2
∧
∀
e'
,
ef
=
Some
e'
→
Qfork
e'
k
r2'
}
.
CoInductive
wp_pre
{
Σ
}
(
E
:
coPset
)
(
Q
:
ival
Σ
→
iProp
Σ
)
:
iexpr
Σ
→
nat
→
res'
Σ
→
Prop
:=
|
wp_pre_0
e
r
:
wp_pre
E
Q
e
0
r
|
wp_pre_value
n
r
v
:
Q
v
n
r
→
wp_pre
E
Q
(
of_val
v
)
n
r
|
wp_pre_step
n
r1
e1
:
to_val
e1
=
None
→
(
∀
rf
k
Ef
σ1
,
1
<
k
<
n
→
E
∩
Ef
=
∅
→
wsat
(
S
k
)
(
E
∪
Ef
)
σ1
(
r1
⋅
rf
)
→
wp_go
(
E
∪
Ef
)
(
wp_pre
E
Q
)
(
wp_pre
coPset_all
(
λ
_,
True
%
I
))
k
rf
e1
σ1
)
→
wp_pre
E
Q
e1
n
r1
.
Program
Definition
wp
{
Σ
}
(
E
:
coPset
)
(
e
:
iexpr
Σ
)
(
Q
:
ival
Σ
→
iProp
Σ
)
:
iProp
Σ
:=
{|
uPred_holds
:=
wp_pre
E
Q
e
|}
.
Next
Obligation
.
intros
Σ
E
e
Q
r1
r2
n
Hwp
Hr
.
destruct
Hwp
as
[|
|
n
r1
e2
?
Hgo
];
constructor
;
rewrite
-
?Hr
;
auto
.
intros
rf
k
Ef
σ1
?;
rewrite
-
(
dist_le
_
_
_
_
Hr
);
naive_solver
.
Qed
.
Next
Obligation
.
constructor
.
Qed
.
Next
Obligation
.
intros
Σ
E
e
Q
r1
r2
n1
;
revert
Q
E
e
r1
r2
.
induction
n1
as
[
n1
IH
]
using
lt_wf_ind
;
intros
Q
E
e
r1
r1'
n2
.
destruct
1
as
[|
|
n1
r1
e1
?
Hgo
]
.
*
rewrite
Nat
.
le_0_r
;
intros
?
->
?;
constructor
.
*
constructor
;
eauto
using
uPred_weaken
.
*
intros
[
rf'
Hr
]
??;
constructor
;
[
done
|
intros
rf
k
Ef
σ1
???]
.
destruct
(
Hgo
(
rf'
⋅
rf
)
k
Ef
σ1
)
as
[
Hsafe
Hstep
];
rewrite
?(
associative
_)
-
?Hr
;
auto
;
constructor
;
[
done
|]
.
intros
e2
σ2
ef
?;
destruct
(
Hstep
e2
σ2
ef
)
as
(
r2
&
r2'
&
?
&
?
&
?);
auto
.
exists
r2
,
(
r2'
⋅
rf'
);
split_ands
;
eauto
10
using
(
IH
k
),
@
ra_included_l
.
by
rewrite
-!
(
associative
_)
(
associative
_
r2
)
.
Qed
.
Instance
:
Params
(
@
wp
)
3
.
Section
wp
.
Context
{
Σ
:
iParam
}
.
Implicit
Types
P
:
iProp
Σ
.
Implicit
Types
Q
:
ival
Σ
→
iProp
Σ
.
Implicit
Types
v
:
ival
Σ
.
Implicit
Types
e
:
iexpr
Σ
.
Lemma
wp_weaken
E1
E2
e
Q1
Q2
r
n
n'
:
E1
⊆
E2
→
(
∀
v
r
n'
,
n'
≤
n
→
✓
{
n'
}
r
→
Q1
v
n'
r
→
Q2
v
n'
r
)
→
n'
≤
n
→
✓
{
n'
}
r
→
wp
E1
e
Q1
n'
r
→
wp
E2
e
Q2
n'
r
.
Proof
.
intros
HE
HQ
;
revert
e
r
;
induction
n'
as
[
n'
IH
]
using
lt_wf_ind
;
intros
e
r
.
destruct
3
as
[|
|
n'
r
e1
?
Hgo
];
constructor
;
eauto
.
intros
rf
k
Ef
σ1
???
.
assert
(
E2
∪
Ef
=
E1
∪
(
E2
∖
E1
∪
Ef
))
as
HE'
.
{
by
rewrite
(
associative_L
_)
-
union_difference_L
.
}
destruct
(
Hgo
rf
k
((
E2
∖
E1
)
∪
Ef
)
σ1
)
as
[
Hsafe
Hstep
];
rewrite
-
?HE'
;
auto
.
split
;
[
done
|
intros
e2
σ2
ef
?]
.
destruct
(
Hstep
e2
σ2
ef
)
as
(
r2
&
r2'
&
?
&
?
&
?);
auto
.
exists
r2
,
r2'
;
split_ands
;
[
rewrite
HE'
|
eapply
IH
|];
eauto
.
Qed
.
Global
Instance
wp_ne
E
e
n
:
Proper
(
pointwise_relation
_
(
dist
n
)
==>
dist
n
)
(
wp
E
e
)
.
Proof
.
by
intros
Q
Q'
HQ
;
split
;
apply
wp_weaken
with
n
;
try
apply
HQ
.
Qed
.
Global
Instance
wp_proper
E
e
:
Proper
(
pointwise_relation
_
(
≡
)
==>
(
≡
))
(
wp
E
e
)
.
Proof
.
by
intros
Q
Q'
?;
apply
equiv_dist
=>
n
;
apply
wp_ne
=>
v
;
apply
equiv_dist
.
Qed
.
Lemma
wp_value
E
Q
v
:
Q
v
⊑
wp
E
(
of_val
v
)
Q
.
Proof
.
by
constructor
.
Qed
.
Lemma
wp_mono
E
e
Q1
Q2
:
(
∀
v
,
Q1
v
⊑
Q2
v
)
→
wp
E
e
Q1
⊑
wp
E
e
Q2
.
Proof
.
by
intros
HQ
r
n
?;
apply
wp_weaken
with
n
;
intros
;
try
apply
HQ
.
Qed
.
Lemma
wp_pvs
E
e
Q
:
pvs
E
E
(
wp
E
e
Q
)
⊑
wp
E
e
(
λ
v
,
pvs
E
E
(
Q
v
))
.
Proof
.
intros
r
[|
n
]
?;
[
done
|];
intros
Hvs
.
destruct
(
to_val
e
)
as
[
v
|]
eqn
:
He
;
[
apply
of_to_val
in
He
;
subst
|]
.
{
constructor
;
eapply
pvs_mono
,
Hvs
;
auto
;
clear
.
intros
r
n
?;
inversion
1
as
[|
|???
He
];
simplify_equality
;
auto
.
by
rewrite
?to_of_val
in
He
.
}
constructor
;
[
done
|
intros
rf
k
Ef
σ1
???]
.
destruct
(
Hvs
rf
(
S
k
)
Ef
σ1
)
as
(
r'
&
Hwp
&
?);
auto
.
inversion
Hwp
as
[|
|????
Hgo
];
subst
;
[
by
rewrite
to_of_val
in
He
|]
.
destruct
(
Hgo
rf
k
Ef
σ1
)
as
[
Hsafe
Hstep
];
auto
.
split
;
[
done
|
intros
e2
σ2
ef
?]
.
destruct
(
Hstep
e2
σ2
ef
)
as
(
r2
&
r2'
&
?
&
Hwp'
&
?);
auto
.
exists
r2
,
r2'
;
split_ands
;
auto
.
eapply
wp_mono
,
Hwp'
;
auto
using
pvs_intro
.
Qed
.
Lemma
wp_atomic
E1
E2
e
Q
:
E2
⊆
E1
→
atomic
e
→
pvs
E1
E2
(
wp
E2
e
(
λ
v
,
pvs
E2
E1
(
Q
v
)))
⊑
wp
E1
e
Q
.
Proof
.
intros
?
He
r
n
?
Hvs
;
constructor
;
eauto
using
atomic_not_value
.
intros
rf
k
Ef
σ1
???
.
destruct
(
Hvs
rf
(
S
k
)
Ef
σ1
)
as
(
r'
&
Hwp
&
?);
auto
.
inversion
Hwp
as
[|
|????
Hgo
];
subst
;
[
by
destruct
(
atomic_of_val
v
)|]
.
destruct
(
Hgo
rf
k
Ef
σ1
)
as
[
Hsafe
Hstep
];
clear
Hgo
;
auto
.
split
;
[
done
|
intros
e2
σ2
ef
?]
.
destruct
(
Hstep
e2
σ2
ef
)
as
(
r2
&
r2'
&
?
&
Hwp'
&
?);
clear
Hsafe
Hstep
;
auto
.
destruct
Hwp'
as
[|
k
r2
v
Hvs'
|
k
r2
e2
Hgo
];
[
lia
|
|
destruct
(
atomic_step
e
σ1
e2
σ2
ef
);
naive_solver
]
.
destruct
(
Hvs'
(
r2'
⋅
rf
)
k
Ef
σ2
)
as
(
r3
&
[]);
rewrite
?(
associative
_);
auto
.
by
exists
r3
,
r2'
;
split_ands
;
[
rewrite
-
(
associative
_)|
constructor
|]
.
Qed
.
Lemma
wp_mask_weaken
E1
E2
e
Q
:
E1
⊆
E2
→
wp
E1
e
Q
⊑
wp
E2
e
Q
.
Proof
.
by
intros
HE
r
n
?;
apply
wp_weaken
with
n
.
Qed
.
Lemma
wp_frame_r
E
e
Q
R
:
(
wp
E
e
Q
★
R
)
⊑
wp
E
e
(
λ
v
,
Q
v
★
R
)
.
Proof
.
intros
r'
n
Hvalid
(
r
&
rR
&
Hr
&
Hwp
&
?);
revert
Hvalid
.
rewrite
Hr
;
clear
Hr
;
revert
e
r
Hwp
.
induction
n
as
[
n
IH
]
using
lt_wf_ind
;
intros
e
r1
.
destruct
1
as
[|
|
n
r
e
?
Hgo
];
constructor
;
[
exists
r
,
rR
;
eauto
|
auto
|]
.
intros
rf
k
Ef
σ1
???;
destruct
(
Hgo
(
rR
⋅
rf
)
k
Ef
σ1
)
as
[
Hsafe
Hstep
];
auto
.
{
by
rewrite
(
associative
_)
.
}
split
;
[
done
|
intros
e2
σ2
ef
?]
.
destruct
(
Hstep
e2
σ2
ef
)
as
(
r2
&
r2'
&
?
&
?
&
?);
auto
.
exists
(
r2
⋅
rR
),
r2'
;
split_ands
;
auto
.
*
by
rewrite
-
(
associative
_
r2
)
(
commutative
_
rR
)
!
(
associative
_)
-
(
associative
_
_
rR
)
.
*
apply
IH
;
eauto
using
uPred_weaken
.
Qed
.
Lemma
wp_frame_later_r
E
e
Q
R
:
to_val
e
=
None
→
(
wp
E
e
Q
★
▷
R
)
⊑
wp
E
e
(
λ
v
,
Q
v
★
R
)
.
Proof
.
intros
He
r'
n
Hvalid
(
r
&
rR
&
Hr
&
Hwp
&
?);
revert
Hvalid
;
rewrite
Hr
;
clear
Hr
.
destruct
Hwp
as
[|
|[|
n
]
r
e
?
Hgo
];
[
done
|
by
rewrite
to_of_val
in
He
|
done
|
]
.
constructor
;
[
done
|
intros
rf
k
Ef
σ1
???]
.
destruct
(
Hgo
(
rR
⋅
rf
)
k
Ef
σ1
)
as
[
Hsafe
Hstep
];
rewrite
?(
associative
_);
auto
.
split
;
[
done
|
intros
e2
σ2
ef
?]
.
destruct
(
Hstep
e2
σ2
ef
)
as
(
r2
&
r2'
&
?
&
?
&
?);
auto
.
exists
(
r2
⋅
rR
),
r2'
;
split_ands
;
auto
.
*
by
rewrite
-
(
associative
_
r2
)
(
commutative
_
rR
)
!
(
associative
_)
-
(
associative
_
_
rR
)
.
*
apply
wp_frame_r
;
[
auto
|
exists
r2
,
rR
;
split_ands
;
auto
]
.
eapply
uPred_weaken
with
rR
n
;
eauto
.
Qed
.
Lemma
wp_bind
`
(
HK
:
is_ctx
K
)
E
e
Q
:
wp
E
e
(
λ
v
,
wp
E
(
K
(
of_val
v
))
Q
)
⊑
wp
E
(
K
e
)
Q
.
Proof
.
intros
r
n
;
revert
e
r
;
induction
n
as
[
n
IH
]
using
lt_wf_ind
;
intros
e
r
?
.
destruct
1
as
[|
|
n
r
e
?
Hgo
];
[|
|
constructor
];
auto
using
is_ctx_value
.
intros
rf
k
Ef
σ1
???;
destruct
(
Hgo
rf
k
Ef
σ1
)
as
[
Hsafe
Hstep
];
auto
.
split
.
{
destruct
Hsafe
as
(
e2
&
σ2
&
ef
&
?)
.
by
exists
(
K
e2
),
σ2
,
ef
;
apply
is_ctx_step_preserved
.
}
intros
e2
σ2
ef
?
.
destruct
(
is_ctx_step
_
HK
e
σ1
e2
σ2
ef
)
as
(
e2'
&
->
&
?);
auto
.
destruct
(
Hstep
e2'
σ2
ef
)
as
(
r2
&
r2'
&
?
&
?
&
?);
auto
.
exists
r2
,
r2'
;
split_ands
;
try
eapply
IH
;
eauto
.
Qed
.
(* Derived rules *)
Import
uPred
.
Global
Instance
wp_mono'
E
e
:
Proper
(
pointwise_relation
_
(
⊑
)
==>
(
⊑
))
(
wp
E
e
)
.
Proof
.
by
intros
Q
Q'
?;
apply
wp_mono
.
Qed
.
Lemma
wp_frame_l
E
e
Q
R
:
(
R
★
wp
E
e
Q
)
⊑
wp
E
e
(
λ
v
,
R
★
Q
v
)
.
Proof
.
setoid_rewrite
(
commutative
_
R
);
apply
wp_frame_r
.
Qed
.
Lemma
wp_frame_later_l
E
e
Q
R
:
to_val
e
=
None
→
(
▷
R
★
wp
E
e
Q
)
⊑
wp
E
e
(
λ
v
,
R
★
Q
v
)
.
Proof
.
rewrite
(
commutative
_
(
▷
R
)
%
I
);
setoid_rewrite
(
commutative
_
R
)
.
apply
wp_frame_later_r
.
Qed
.
Lemma
wp_always_l
E
e
Q
R
:
(
□
R
∧
wp
E
e
Q
)
⊑
wp
E
e
(
λ
v
,
□
R
∧
Q
v
)
.
Proof
.
by
setoid_rewrite
always_and_sep_l
;
rewrite
wp_frame_l
.
Qed
.
Lemma
wp_always_r
E
e
Q
R
:
(
wp
E
e
Q
∧
□
R
)
⊑
wp
E
e
(
λ
v
,
Q
v
∧
□
R
)
.
Proof
.
by
setoid_rewrite
always_and_sep_r
;
rewrite
wp_frame_r
.
Qed
.
Lemma
wp_impl_l
E
e
Q1
Q2
:
((
□
∀
v
,
Q1
v
→
Q2
v
)
∧
wp
E
e
Q1
)
⊑
wp
E
e
Q2
.
Proof
.
rewrite
wp_always_l
;
apply
wp_mono
=>
v
.
by
rewrite
always_elim
(
forall_elim
_
v
)
impl_elim_l
.
Qed
.
Lemma
wp_impl_r
E
e
Q1
Q2
:
(
wp
E
e
Q1
∧
□
∀
v
,
Q1
v
→
Q2
v
)
⊑
wp
E
e
Q2
.
Proof
.
by
rewrite
(
commutative
_)
wp_impl_l
.
Qed
.
End
wp
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment