Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris-coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Amin Timany
iris-coq
Commits
8b4d7a8d
Commit
8b4d7a8d
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
derive sts_op_frag from a generic DRA property
parent
e1589fea
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
algebra/dra.v
+15
-1
15 additions, 1 deletion
algebra/dra.v
algebra/sts.v
+4
-13
4 additions, 13 deletions
algebra/sts.v
with
19 additions
and
14 deletions
algebra/dra.v
+
15
−
1
View file @
8b4d7a8d
...
@@ -131,10 +131,24 @@ Proof.
...
@@ -131,10 +131,24 @@ Proof.
intuition
eauto
10
using
dra_disjoint_minus
,
dra_op_minus
.
intuition
eauto
10
using
dra_disjoint_minus
,
dra_op_minus
.
Qed
.
Qed
.
Definition
validityRA
:
cmraT
:=
discreteRA
validity_ra
.
Definition
validityRA
:
cmraT
:=
discreteRA
validity_ra
.
Definition
validity_update
(
x
y
:
validityRA
)
:
Lemma
validity_update
(
x
y
:
validityRA
)
:
(
∀
z
,
✓
x
→
✓
z
→
validity_car
x
⊥
z
→
✓
y
∧
validity_car
y
⊥
z
)
→
x
~~>
y
.
(
∀
z
,
✓
x
→
✓
z
→
validity_car
x
⊥
z
→
✓
y
∧
validity_car
y
⊥
z
)
→
x
~~>
y
.
Proof
.
Proof
.
intros
Hxy
.
apply
discrete_update
.
intros
Hxy
.
apply
discrete_update
.
intros
z
(?
&
?
&
?);
split_ands'
;
try
eapply
Hxy
;
eauto
.
intros
z
(?
&
?
&
?);
split_ands'
;
try
eapply
Hxy
;
eauto
.
Qed
.
Qed
.
Lemma
to_validity_valid
(
x
:
A
)
:
✓
to_validity
x
→
✓
x
.
Proof
.
intros
.
done
.
Qed
.
Lemma
to_validity_op
(
x
y
:
A
)
:
✓
x
→
✓
y
→
(
✓
(
x
⋅
y
)
→
x
⊥
y
)
→
to_validity
(
x
⋅
y
)
≡
to_validity
x
⋅
to_validity
y
.
Proof
.
intros
Hvalx
Hvaly
Hdisj
.
split
;
[
split
|
done
]
.
-
simpl
.
auto
.
-
simpl
.
intros
(_
&
_
&
?)
.
auto
using
dra_op_valid
,
to_validity_valid
.
Qed
.
End
dra
.
End
dra
.
This diff is collapsed.
Click to expand it.
algebra/sts.v
+
4
−
13
View file @
8b4d7a8d
...
@@ -336,19 +336,10 @@ Lemma sts_op_frag S1 S2 T1 T2 :
...
@@ -336,19 +336,10 @@ Lemma sts_op_frag S1 S2 T1 T2 :
T1
∪
T2
⊆
∅
→
sts
.
closed
S1
T1
→
sts
.
closed
S2
T2
→
T1
∪
T2
⊆
∅
→
sts
.
closed
S1
T1
→
sts
.
closed
S2
T2
→
sts_frag
(
S1
∩
S2
)
(
T1
∪
T2
)
≡
sts_frag
S1
T1
⋅
sts_frag
S2
T2
.
sts_frag
(
S1
∩
S2
)
(
T1
∪
T2
)
≡
sts_frag
S1
T1
⋅
sts_frag
S2
T2
.
Proof
.
Proof
.
(* Somehow I feel like a very similar proof muts have happened above, when
intros
HT
HS1
HS2
.
rewrite
/
sts_frag
.
proving the DRA axioms. After all, we are just reflecting the operation here. *)
(* FIXME why does rewrite not work?? *)
intros
HT
HS1
HS2
;
split
;
[
split
|
constructor
;
solve_elem_of
];
simpl
.
etransitivity
;
last
eapply
to_validity_op
;
try
done
;
[]
.
-
intros
;
split_ands
;
try
done
;
[]
.
constructor
;
last
solve_elem_of
.
intros
Hval
.
constructor
;
last
solve_elem_of
.
eapply
closed_ne
,
Hval
.
by
eapply
closed_ne
.
-
intros
(_
&
_
&
H
)
.
inversion_clear
H
.
constructor
;
first
done
.
+
move
=>
s
/
elem_of_intersection
[
/
(
closed_disjoint
_
_
HS1
)
Hs1
/
(
closed_disjoint
_
_
HS2
)
Hs2
]
.
solve_elem_of
+
Hs1
Hs2
.
+
move
=>
s1
s2
/
elem_of_intersection
[
Hs1
Hs2
]
Hstep
.
apply
elem_of_intersection
.
split
;
eapply
closed_step
;
eauto
;
[|];
eapply
framestep_mono
,
Hstep
;
done
||
solve_elem_of
.
Qed
.
Qed
.
(** Frame preserving updates *)
(** Frame preserving updates *)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment