Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris-coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Amin Timany
iris-coq
Commits
399cb6ef
Commit
399cb6ef
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Use type class to bundle auth properties.
Also, do some cleanup, like declaring Params instances.
parent
ceb8441a
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
program_logic/auth.v
+39
-33
39 additions, 33 deletions
program_logic/auth.v
with
39 additions
and
33 deletions
program_logic/auth.v
+
39
−
33
View file @
399cb6ef
...
...
@@ -2,61 +2,66 @@ From algebra Require Export auth functor.
From
program_logic
Require
Export
invariants
ghost_ownership
.
Import
uPred
.
Class
AuthInG
Λ
Σ
(
i
:
gid
)
(
A
:
cmraT
)
`{
Empty
A
}
:=
{
auth_inG
:>
InG
Λ
Σ
i
(
authRA
A
);
auth_identity
:>
CMRAIdentity
A
;
auth_timeless
(
a
:
A
)
:>
Timeless
a
;
}
.
Definition
auth_inv
{
Λ
Σ
A
}
(
i
:
gid
)
`{
AuthInG
Λ
Σ
i
A
}
(
γ
:
gname
)
(
φ
:
A
→
iPropG
Λ
Σ
)
:
iPropG
Λ
Σ
:=
(
∃
a
,
own
i
γ
(
●
a
)
★
φ
a
)
%
I
.
Definition
auth_own
{
Λ
Σ
A
}
(
i
:
gid
)
`{
AuthInG
Λ
Σ
i
A
}
(
γ
:
gname
)
(
a
:
A
)
:
iPropG
Λ
Σ
:=
own
i
γ
(
◯
a
)
.
Definition
auth_ctx
{
Λ
Σ
A
}
(
i
:
gid
)
`{
AuthInG
Λ
Σ
i
A
}
(
γ
:
gname
)
(
N
:
namespace
)
(
φ
:
A
→
iPropG
Λ
Σ
)
:
iPropG
Λ
Σ
:=
inv
N
(
auth_inv
i
γ
φ
)
.
Instance
:
Params
(
@
auth_inv
)
7
.
Instance
:
Params
(
@
auth_own
)
7
.
Instance
:
Params
(
@
auth_ctx
)
8
.
Section
auth
.
Context
{
Λ
:
language
}
{
Σ
:
iFunctorG
}
.
Context
{
A
:
cmraT
}
`{
Empty
A
,
!
CMRAIdentity
A
}
`{
!∀
a
:
A
,
Timeless
a
}
.
Context
(
AuthI
:
gid
)
`{
!
InG
Λ
Σ
AuthI
(
authRA
A
)}
.
Context
(
N
:
namespace
)
.
Context
`{
AuthInG
Λ
Σ
AuthI
A
}
.
Context
(
φ
:
A
→
iPropG
Λ
Σ
)
{
Hφ
:
∀
n
,
Proper
(
dist
n
==>
dist
n
)
φ
}
.
Implicit
Types
N
:
namespace
.
Implicit
Types
P
Q
R
:
iPropG
Λ
Σ
.
Implicit
Types
a
b
:
A
.
Implicit
Types
γ
:
gname
.
Definition
auth_inv
(
γ
:
gname
)
:
iPropG
Λ
Σ
:=
(
∃
a
,
own
AuthI
γ
(
●
a
)
★
φ
a
)
%
I
.
Definition
auth_own
(
γ
:
gname
)
(
a
:
A
)
:
iPropG
Λ
Σ
:=
own
AuthI
γ
(
◯
a
)
.
Definition
auth_ctx
(
γ
:
gname
)
:
iPropG
Λ
Σ
:=
inv
N
(
auth_inv
γ
)
.
Lemma
auth_alloc
a
:
✓
a
→
φ
a
⊑
pvs
N
N
(
∃
γ
,
auth_ctx
γ
∧
auth_own
γ
a
)
.
Lemma
auth_alloc
N
a
:
✓
a
→
φ
a
⊑
pvs
N
N
(
∃
γ
,
auth_ctx
AuthI
γ
N
φ
∧
auth_own
AuthI
γ
a
)
.
Proof
.
intros
Ha
.
rewrite
-
(
right_id
True
%
I
(
★
)
%
I
(
φ
_))
.
rewrite
(
own_alloc
AuthI
(
Auth
(
Excl
a
)
a
)
N
)
//
;
[]
.
rewrite
pvs_frame_l
.
apply
pvs_strip_pvs
.
rewrite
sep_exist_l
.
apply
exist_elim
=>
γ
.
rewrite
-
(
exist_intro
γ
)
.
transitivity
(
▷
auth_inv
γ
★
auth_own
γ
a
)
%
I
.
transitivity
(
▷
auth_inv
AuthI
γ
φ
★
auth_own
AuthI
γ
a
)
%
I
.
{
rewrite
/
auth_inv
-
later_intro
-
(
exist_intro
a
)
.
rewrite
[(_
★
φ
_)
%
I
]
comm
-
assoc
.
apply
sep_mono
;
first
done
.
rewrite
/
auth_own
-
own_op
auth_both_op
.
done
.
}
by
rewrite
[(_
★
φ
_)
%
I
]
comm
-
assoc
/
auth_own
-
own_op
auth_both_op
.
}
rewrite
(
inv_alloc
N
)
/
auth_ctx
pvs_frame_r
.
apply
pvs_mono
.
by
rewrite
always_and_sep_l
.
Qed
.
Lemma
auth_empty
γ
E
:
True
⊑
pvs
E
E
(
auth_own
γ
∅
)
.
Lemma
auth_empty
γ
E
:
True
⊑
pvs
E
E
(
auth_own
AuthI
γ
∅
)
.
Proof
.
by
rewrite
own_update_empty
/
auth_own
.
Qed
.
Lemma
auth_opened
E
a
γ
:
(
▷
auth_inv
γ
★
auth_own
γ
a
)
⊑
pvs
E
E
(
∃
a'
,
▷
φ
(
a
⋅
a'
)
★
own
AuthI
γ
(
●
(
a
⋅
a'
)
⋅
◯
a
))
.
(
▷
auth_inv
AuthI
γ
φ
★
auth_own
AuthI
γ
a
)
⊑
pvs
E
E
(
∃
a'
,
▷
φ
(
a
⋅
a'
)
★
own
AuthI
γ
(
●
(
a
⋅
a'
)
⋅
◯
a
))
.
Proof
.
rewrite
/
auth_inv
.
rewrite
later_exist
sep_exist_r
.
apply
exist_elim
=>
b
.
rewrite
later_sep
[(
▷
own
_
_
_)
%
I
]
pvs_timeless
!
pvs_frame_r
.
apply
pvs_mono
.
rewrite
/
auth_own
[(_
★
▷
φ
_)
%
I
]
comm
-
assoc
-
own_op
.
rewrite
/
auth_inv
later_exist
sep_exist_r
.
apply
exist_elim
=>
b
.
rewrite
later_sep
[(
▷
own
_
_
_)
%
I
]
pvs_timeless
!
pvs_frame_r
.
apply
pvs_mono
.
rewrite
/
auth_own
[(_
★
▷
φ
_)
%
I
]
comm
-
assoc
-
own_op
.
rewrite
own_valid_r
auth_validI
/=
and_elim_l
!
sep_exist_l
/=.
apply
exist_elim
=>
a'
.
rewrite
[
∅
⋅
_]
left_id
-
(
exist_intro
a'
)
.
apply
(
eq_rewrite
b
(
a
⋅
a'
)
(
λ
x
,
▷
φ
x
★
own
AuthI
γ
(
●
x
⋅
◯
a
))
%
I
);
first
by
solve_ne
.
{
by
rewrite
!
sep_elim_r
.
}
apply
sep_mono
;
first
done
.
by
rewrite
sep_elim_l
.
apply
exist_elim
=>
a'
.
rewrite
left_id
-
(
exist_intro
a'
)
.
apply
(
eq_rewrite
b
(
a
⋅
a'
)
(
λ
x
,
▷
φ
x
★
own
AuthI
γ
(
●
x
⋅
◯
a
))
%
I
);
[
solve_ne
|
|];
auto
with
I
.
Qed
.
Lemma
auth_closing
E
`{
!
LocalUpdate
Lv
L
}
a
a'
γ
:
Lv
a
→
✓
(
L
a
⋅
a'
)
→
(
▷
φ
(
L
a
⋅
a'
)
★
own
AuthI
γ
(
●
(
a
⋅
a'
)
⋅
◯
a
))
⊑
pvs
E
E
(
▷
auth_inv
γ
★
auth_own
γ
(
L
a
))
.
⊑
pvs
E
E
(
▷
auth_inv
AuthI
γ
φ
★
auth_own
AuthI
γ
(
L
a
))
.
Proof
.
intros
HL
Hv
.
rewrite
/
auth_inv
/
auth_own
-
(
exist_intro
(
L
a
⋅
a'
))
.
rewrite
later_sep
[(_
★
▷
φ
_)
%
I
]
comm
-
assoc
.
...
...
@@ -69,11 +74,12 @@ Section auth.
step-indices. However, since A is timeless, that should not be
a restriction. *)
Lemma
auth_fsa
{
X
:
Type
}
{
FSA
}
(
FSAs
:
FrameShiftAssertion
(
A
:=
X
)
FSA
)
`{
!
LocalUpdate
Lv
L
}
E
P
(
Q
:
X
→
iPropG
Λ
Σ
)
R
γ
a
:
`{
!
LocalUpdate
Lv
L
}
N
E
P
(
Q
:
X
→
iPropG
Λ
Σ
)
R
γ
a
:
nclose
N
⊆
E
→
R
⊑
auth_ctx
γ
→
R
⊑
(
auth_own
γ
a
★
(
∀
a'
,
▷
φ
(
a
⋅
a'
)
-★
FSA
(
E
∖
nclose
N
)
(
λ
x
,
■
(
Lv
a
∧
✓
(
L
a
⋅
a'
))
★
▷
φ
(
L
a
⋅
a'
)
★
(
auth_own
γ
(
L
a
)
-★
Q
x
))))
→
R
⊑
auth_ctx
AuthI
γ
N
φ
→
R
⊑
(
auth_own
AuthI
γ
a
★
∀
a'
,
▷
φ
(
a
⋅
a'
)
-★
FSA
(
E
∖
nclose
N
)
(
λ
x
,
■
(
Lv
a
∧
✓
(
L
a
⋅
a'
))
★
▷
φ
(
L
a
⋅
a'
)
★
(
auth_own
AuthI
γ
(
L
a
)
-★
Q
x
)))
→
R
⊑
FSA
E
Q
.
Proof
.
rewrite
/
auth_ctx
=>
HN
Hinv
Hinner
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment