Forked from
Iris / Iris
8138 commits behind the upstream repository.
-
Robbert Krebbers authoredRobbert Krebbers authored
agree.v 7.61 KiB
Require Export modures.cmra.
Local Hint Extern 10 (_ ≤ _) => omega.
Record agree (A : Type) : Type := Agree {
agree_car :> nat → A;
agree_is_valid : nat → Prop;
agree_valid_0 : agree_is_valid 0;
agree_valid_S n : agree_is_valid (S n) → agree_is_valid n
}.
Arguments Agree {_} _ _ _ _.
Arguments agree_car {_} _ _.
Arguments agree_is_valid {_} _ _.
Section agree.
Context {A : cofeT}.
Instance agree_validN : ValidN (agree A) := λ n x,
agree_is_valid x n ∧ ∀ n', n' ≤ n → x n' ={n'}= x n.
Lemma agree_valid_le (x : agree A) n n' :
agree_is_valid x n → n' ≤ n → agree_is_valid x n'.
Proof. induction 2; eauto using agree_valid_S. Qed.
Instance agree_valid : Valid (agree A) := λ x, ∀ n, ✓{n} x.
Instance agree_equiv : Equiv (agree A) := λ x y,
(∀ n, agree_is_valid x n ↔ agree_is_valid y n) ∧
(∀ n, agree_is_valid x n → x n ={n}= y n).
Instance agree_dist : Dist (agree A) := λ n x y,
(∀ n', n' ≤ n → agree_is_valid x n' ↔ agree_is_valid y n') ∧
(∀ n', n' ≤ n → agree_is_valid x n' → x n' ={n'}= y n').
Program Instance agree_compl : Compl (agree A) := λ c,
{| agree_car n := c n n; agree_is_valid n := agree_is_valid (c n) n |}.
Next Obligation. intros; apply agree_valid_0. Qed.
Next Obligation.
intros c n ?; apply (chain_cauchy c n (S n)), agree_valid_S; auto.
Qed.
Definition agree_cofe_mixin : CofeMixin (agree A).
Proof.
split.
* intros x y; split.
+ by intros Hxy n; split; intros; apply Hxy.
+ by intros Hxy; split; intros; apply Hxy with n.
* split.
+ by split.
+ by intros x y Hxy; split; intros; symmetry; apply Hxy; auto; apply Hxy.
+ intros x y z Hxy Hyz; split; intros n'; intros.
- transitivity (agree_is_valid y n'). by apply Hxy. by apply Hyz.
- transitivity (y n'). by apply Hxy. by apply Hyz, Hxy.
* intros n x y Hxy; split; intros; apply Hxy; auto.
* intros x y; split; intros n'; rewrite Nat.le_0_r; intros ->; [|done].
by split; intros; apply agree_valid_0.
* by intros c n; split; intros; apply (chain_cauchy c).
Qed.
Canonical Structure agreeC := CofeT agree_cofe_mixin.
Lemma agree_car_ne (x y : agree A) n : ✓{n} x → x ={n}= y → x n ={n}= y n.
Proof. by intros [??] Hxy; apply Hxy. Qed.
Lemma agree_cauchy (x : agree A) n i : ✓{n} x → i ≤ n → x i ={i}= x n.
Proof. by intros [? Hx]; apply Hx. Qed.
Program Instance agree_op : Op (agree A) := λ x y,
{| agree_car := x;
agree_is_valid n := agree_is_valid x n ∧ agree_is_valid y n ∧ x ={n}= y |}.
Next Obligation. by intros; simpl; split_ands; try apply agree_valid_0. Qed.
Next Obligation. naive_solver eauto using agree_valid_S, dist_S. Qed.
Instance agree_unit : Unit (agree A) := id.
Instance agree_minus : Minus (agree A) := λ x y, x.
Instance: Commutative (≡) (@op (agree A) _).
Proof. intros x y; split; [naive_solver|by intros n (?&?&Hxy); apply Hxy]. Qed.
Definition agree_idempotent (x : agree A) : x ⋅ x ≡ x.
Proof. split; naive_solver. Qed.
Instance: ∀ n : nat, Proper (dist n ==> impl) (@validN (agree A) _ n).
Proof.
intros n x y Hxy [? Hx]; split; [by apply Hxy|intros n' ?].
rewrite -(proj2 Hxy n') 1?(Hx n'); eauto using agree_valid_le.
by apply dist_le with n; try apply Hxy.
Qed.
Instance: ∀ x : agree A, Proper (dist n ==> dist n) (op x).
Proof.
intros n x y1 y2 [Hy' Hy]; split; [|done].
split; intros (?&?&Hxy); repeat (intro || split);
try apply Hy'; eauto using agree_valid_le.
* etransitivity; [apply Hxy|apply Hy]; eauto using agree_valid_le.
* etransitivity; [apply Hxy|symmetry; apply Hy, Hy'];
eauto using agree_valid_le.
Qed.
Instance: Proper (dist n ==> dist n ==> dist n) (@op (agree A) _).
Proof. by intros n x1 x2 Hx y1 y2 Hy; rewrite Hy !(commutative _ _ y2) Hx. Qed.
Instance: Proper ((≡) ==> (≡) ==> (≡)) op := ne_proper_2 _.
Instance: Associative (≡) (@op (agree A) _).
Proof.
intros x y z; split; simpl; intuition;
repeat match goal with H : agree_is_valid _ _ |- _ => clear H end;
by cofe_subst; rewrite !agree_idempotent.
Qed.
Lemma agree_includedN (x y : agree A) n : x ≼{n} y ↔ y ={n}= x ⋅ y.
Proof.
split; [|by intros ?; exists y].
by intros [z Hz]; rewrite Hz (associative _) agree_idempotent.
Qed.
Definition agree_cmra_mixin : CMRAMixin (agree A).
Proof.
split; try (apply _ || done).
* by intros n x1 x2 Hx y1 y2 Hy.
* intros x; split; [apply agree_valid_0|].
by intros n'; rewrite Nat.le_0_r; intros ->.
* intros n x [? Hx]; split; [by apply agree_valid_S|intros n' ?].
rewrite (Hx n'); last auto.
symmetry; apply dist_le with n; try apply Hx; auto.
* intros x; apply agree_idempotent.
* by intros x y n [(?&?&?) ?].
* by intros x y n; rewrite agree_includedN.
Qed.
Lemma agree_op_inv (x1 x2 : agree A) n : ✓{n} (x1 ⋅ x2) → x1 ={n}= x2.
Proof. intros Hxy; apply Hxy. Qed.
Lemma agree_valid_includedN (x y : agree A) n : ✓{n} y → x ≼{n} y → x ={n}= y.
Proof.
move=> Hval [z Hy]; move: Hval; rewrite Hy.
by move=> /agree_op_inv->; rewrite agree_idempotent.
Qed.
Definition agree_cmra_extend_mixin : CMRAExtendMixin (agree A).
Proof.
intros n x y1 y2 Hval Hx; exists (x,x); simpl; split.
* by rewrite agree_idempotent.
* by move: Hval; rewrite Hx; move=> /agree_op_inv->; rewrite agree_idempotent.
Qed.
Canonical Structure agreeRA : cmraT :=
CMRAT agree_cofe_mixin agree_cmra_mixin agree_cmra_extend_mixin.
Program Definition to_agree (x : A) : agree A :=
{| agree_car n := x; agree_is_valid n := True |}.
Solve Obligations with done.
Global Instance to_agree_ne n : Proper (dist n ==> dist n) to_agree.
Proof. intros x1 x2 Hx; split; naive_solver eauto using @dist_le. Qed.
Global Instance to_agree_proper : Proper ((≡) ==> (≡)) to_agree := ne_proper _.
Global Instance to_agree_inj n : Injective (dist n) (dist n) (to_agree).
Proof. by intros x y [_ Hxy]; apply Hxy. Qed.
Lemma to_agree_car n (x : agree A) : ✓{n} x → to_agree (x n) ={n}= x.
Proof. intros [??]; split; naive_solver eauto using agree_valid_le. Qed.
End agree.
Arguments agreeC : clear implicits.
Arguments agreeRA : clear implicits.
Program Definition agree_map {A B} (f : A → B) (x : agree A) : agree B :=
{| agree_car n := f (x n); agree_is_valid := agree_is_valid x |}.
Solve Obligations with auto using agree_valid_0, agree_valid_S.
Lemma agree_map_id {A} (x : agree A) : agree_map id x = x.
Proof. by destruct x. Qed.
Lemma agree_map_compose {A B C} (f : A → B) (g : B → C) (x : agree A) :
agree_map (g ∘ f) x = agree_map g (agree_map f x).
Proof. done. Qed.
Section agree_map.
Context {A B : cofeT} (f : A → B) `{Hf: ∀ n, Proper (dist n ==> dist n) f}.
Global Instance agree_map_ne n : Proper (dist n ==> dist n) (agree_map f).
Proof. by intros x1 x2 Hx; split; simpl; intros; [apply Hx|apply Hf, Hx]. Qed.
Global Instance agree_map_proper :
Proper ((≡) ==> (≡)) (agree_map f) := ne_proper _.
Lemma agree_map_ext (g : A → B) x :
(∀ x, f x ≡ g x) → agree_map f x ≡ agree_map g x.
Proof. by intros Hfg; split; simpl; intros; rewrite ?Hfg. Qed.
Global Instance agree_map_monotone : CMRAMonotone (agree_map f).
Proof.
split; [|by intros n x [? Hx]; split; simpl; [|by intros n' ?; rewrite Hx]].
intros x y n; rewrite !agree_includedN; intros Hy; rewrite Hy.
split; last done; split; simpl; last tauto.
by intros (?&?&Hxy); repeat split; intros;
try apply Hxy; try apply Hf; eauto using @agree_valid_le.
Qed.
End agree_map.
Definition agreeRA_map {A B} (f : A -n> B) : agreeRA A -n> agreeRA B :=
CofeMor (agree_map f : agreeRA A → agreeRA B).
Instance agreeRA_map_ne A B n : Proper (dist n ==> dist n) (@agreeRA_map A B).
Proof.
intros f g Hfg x; split; simpl; intros; first done.
by apply dist_le with n; try apply Hfg.
Qed.