Forked from
Iris / Iris
7402 commits behind the upstream repository.
auth.v 4.74 KiB
From algebra Require Export auth.
From program_logic Require Export invariants ghost_ownership.
Import uPred.
Class AuthInG Λ Σ (i : gid) (A : cmraT) `{Empty A} := {
auth_inG :> InG Λ Σ i (authRA A);
auth_identity :> CMRAIdentity A;
auth_timeless (a : A) :> Timeless a;
}.
Definition auth_inv {Λ Σ A} (i : gid) `{AuthInG Λ Σ i A}
(γ : gname) (φ : A → iPropG Λ Σ) : iPropG Λ Σ := (∃ a, (■✓a ∧ own i γ (● a)) ★ φ a)%I.
Definition auth_own {Λ Σ A} (i : gid) `{AuthInG Λ Σ i A}
(γ : gname) (a : A) : iPropG Λ Σ := own i γ (◯ a).
Definition auth_ctx {Λ Σ A} (i : gid) `{AuthInG Λ Σ i A}
(γ : gname) (N : namespace) (φ : A → iPropG Λ Σ) : iPropG Λ Σ :=
inv N (auth_inv i γ φ).
Instance: Params (@auth_inv) 7.
Instance: Params (@auth_own) 7.
Instance: Params (@auth_ctx) 8.
Section auth.
Context `{AuthInG Λ Σ AuthI A}.
Context (φ : A → iPropG Λ Σ) {φ_proper : Proper ((≡) ==> (≡)) φ}.
Implicit Types N : namespace.
Implicit Types P Q R : iPropG Λ Σ.
Implicit Types a b : A.
Implicit Types γ : gname.
Lemma auth_alloc N a :
✓ a → φ a ⊑ pvs N N (∃ γ, auth_ctx AuthI γ N φ ∧ auth_own AuthI γ a).
Proof.
intros Ha. rewrite -(right_id True%I (★)%I (φ _)).
rewrite (own_alloc AuthI (Auth (Excl a) a) N) //; [].
rewrite pvs_frame_l. apply pvs_strip_pvs.
rewrite sep_exist_l. apply exist_elim=>γ. rewrite -(exist_intro γ).
transitivity (▷ auth_inv AuthI γ φ ★ auth_own AuthI γ a)%I.
{ rewrite /auth_inv -later_intro -(exist_intro a).
rewrite const_equiv // left_id.
rewrite [(_ ★ φ _)%I]comm -assoc. apply sep_mono; first done.
rewrite /auth_own -own_op auth_both_op. done. }
rewrite (inv_alloc N) /auth_ctx pvs_frame_r. apply pvs_mono.
by rewrite always_and_sep_l.
Qed.
Lemma auth_empty γ E : True ⊑ pvs E E (auth_own AuthI γ ∅).
Proof. by rewrite own_update_empty /auth_own. Qed.
Lemma auth_opened E a γ :
(▷ auth_inv AuthI γ φ ★ auth_own AuthI γ a)
⊑ pvs E E (∃ a', ■✓(a ⋅ a') ★ ▷ φ (a ⋅ a') ★ own AuthI γ (● (a ⋅ a') ⋅ ◯ a)).
Proof.
rewrite /auth_inv. rewrite later_exist sep_exist_r. apply exist_elim=>b.
rewrite later_sep [(▷(_ ∧ _))%I]pvs_timeless !pvs_frame_r. apply pvs_mono.
rewrite always_and_sep_l -!assoc. apply const_elim_sep_l=>Hv.
rewrite /auth_own [(▷φ _ ★ _)%I]comm assoc -own_op.
rewrite own_valid_r auth_validI /= and_elim_l sep_exist_l sep_exist_r /=.
apply exist_elim=>a'.
rewrite left_id -(exist_intro a').
apply (eq_rewrite b (a ⋅ a')
(λ x, ■✓x ★ ▷φ x ★ own AuthI γ (● x ⋅ ◯ a))%I).
{ by move=>n ? ? /timeless_iff ->. }
{ by eauto with I. }
rewrite const_equiv // left_id comm.
apply sep_mono; first done.
by rewrite sep_elim_l.
Qed.
Lemma auth_closing E `{!LocalUpdate Lv L} a a' γ :
Lv a → ✓ (L a ⋅ a') →
(▷ φ (L a ⋅ a') ★ own AuthI γ (● (a ⋅ a') ⋅ ◯ a))
⊑ pvs E E (▷ auth_inv AuthI γ φ ★ auth_own AuthI γ (L a)).
Proof.
intros HL Hv. rewrite /auth_inv /auth_own -(exist_intro (L a ⋅ a')).
rewrite later_sep [(_ ★ ▷φ _)%I]comm -assoc.
rewrite -pvs_frame_l. apply sep_mono; first done.
rewrite const_equiv // left_id -later_intro -own_op.
by apply own_update, (auth_local_update_l L).
Qed.
(* Notice how the user has to prove that `b⋅a'` is valid at all
step-indices. However, since A is timeless, that should not be
a restriction. *)
Lemma auth_fsa {X : Type} {FSA} (FSAs : FrameShiftAssertion (A:=X) FSA)
Lv L `{!LocalUpdate Lv L} N E P (Q : X → iPropG Λ Σ) γ a :
nclose N ⊆ E →
P ⊑ auth_ctx AuthI γ N φ →
P ⊑ (auth_own AuthI γ a ★ (∀ a', ■✓(a ⋅ a') ★ ▷φ (a ⋅ a') -★
FSA (E ∖ nclose N) (λ x, ■(Lv a ∧ ✓(L a⋅a')) ★ ▷φ (L a ⋅ a') ★ (auth_own AuthI γ (L a) -★ Q x)))) →
P ⊑ FSA E Q.
Proof.
rewrite /auth_ctx=>HN Hinv Hinner.
eapply inv_fsa; [eassumption..|]. rewrite Hinner=>{Hinner Hinv P}.
apply wand_intro_l.
rewrite assoc auth_opened !pvs_frame_r !sep_exist_r.
apply fsa_strip_pvs; first done. apply exist_elim=>a'.
rewrite (forall_elim a'). rewrite [(▷_ ★ _)%I]comm.
(* Getting this wand eliminated is really annoying. *)
rewrite [(■_ ★ _)%I]comm -!assoc [(▷φ _ ★ _ ★ _)%I]assoc [(▷φ _ ★ _)%I]comm.
rewrite wand_elim_r fsa_frame_l.
apply fsa_mono_pvs; first done. intros x. rewrite comm -!assoc.
apply const_elim_sep_l=>-[HL Hv].
rewrite assoc [(_ ★ (_ -★ _))%I]comm -assoc.
rewrite auth_closing //; []. erewrite pvs_frame_l. apply pvs_mono.
by rewrite assoc [(_ ★ ▷_)%I]comm -assoc wand_elim_l.
Qed.
End auth.