Newer
Older
From iris.heap_lang Require Export lifting.
From iris.algebra Require Import upred_big_op frac dec_agree.
From iris.program_logic Require Export invariants ghost_ownership.
From iris.program_logic Require Import ownership auth.
Import uPred.
(* TODO: The entire construction could be generalized to arbitrary languages that have
a finmap as their state. Or maybe even beyond "as their state", i.e. arbitrary
predicates over finmaps instead of just ownP. *)
Definition heapUR : ucmraT := gmapUR loc (prodR fracR (dec_agreeR val)).
(** The CMRA we need. *)
Class heapG Σ := HeapG {
heap_inG :> authG heap_lang Σ heapUR;
(** The Functor we need. *)
Definition heapGF : gFunctor := authGF heapUR.
Definition to_heap : state → heapUR := fmap (λ v, (1%Qp, DecAgree v)).
Definition of_heap : heapUR → state := omap (maybe DecAgree ∘ snd).
Section definitions.
Context `{i : heapG Σ}.
Definition heap_mapsto (l : loc) (q : Qp) (v: val) : iPropG heap_lang Σ :=
auth_own heap_name {[ l := (q, DecAgree v) ]}.
Definition heap_inv (h : heapUR) : iPropG heap_lang Σ :=
ownP (of_heap h).
Definition heap_ctx (N : namespace) : iPropG heap_lang Σ :=
auth_ctx heap_name N heap_inv.
Global Instance heap_inv_proper : Proper ((≡) ==> (⊣⊢)) heap_inv.
Proof. solve_proper. Qed.
Global Instance heap_ctx_persistent N : PersistentP (heap_ctx N).
Proof. apply _. Qed.
End definitions.
Typeclasses Opaque heap_ctx heap_mapsto.
Notation "l ↦{ q } v" := (heap_mapsto l q v)
(at level 20, q at level 50, format "l ↦{ q } v") : uPred_scope.
Notation "l ↦ v" := (heap_mapsto l 1 v) (at level 20) : uPred_scope.
Context {Σ : gFunctors}.
Implicit Types N : namespace.
Implicit Types P Q : iPropG heap_lang Σ.
Implicit Types Φ : val → iPropG heap_lang Σ.
Implicit Types σ : state.
Implicit Types h g : heapUR.
(** Conversion to heaps and back *)
Global Instance of_heap_proper : Proper ((≡) ==> (=)) of_heap.
Lemma from_to_heap σ : of_heap (to_heap σ) = σ.
Proof.
apply map_eq=>l. rewrite lookup_omap lookup_fmap. by case (σ !! l).
Qed.
Lemma to_heap_valid σ : ✓ to_heap σ.
Proof. intros l. rewrite lookup_fmap. by case (σ !! l). Qed.
of_heap (<[l:=(1%Qp, DecAgree v)]> h) = <[l:=v]> (of_heap h).
Proof. by rewrite /of_heap -(omap_insert _ _ _ (1%Qp, DecAgree v)). Qed.
✓ ({[l := (q, DecAgree v)]} ⋅ h) →
of_heap ({[l := (q, DecAgree v)]} ⋅ h) = <[l:=v]> (of_heap h).
Proof.
intros Hv. apply map_eq=> l'; destruct (decide (l' = l)) as [->|].
- move: (Hv l). rewrite /of_heap lookup_insert
lookup_omap (lookup_op _ h) lookup_singleton.
case _:(h !! l)=>[[q' [v'|]]|] //=; last by move=> [??].
move=> [? /dec_agree_op_inv [->]]. by rewrite dec_agree_idemp.
- rewrite /of_heap lookup_insert_ne // !lookup_omap.
by rewrite (lookup_op _ h) lookup_singleton_ne // left_id_L.
to_heap (<[l:=v]> σ) = <[l:=(1%Qp, DecAgree v)]> (to_heap σ).
Proof. by rewrite /to_heap -fmap_insert. Qed.
✓ h → of_heap h !! l = None → h !! l = None.
move=> /(_ l). rewrite /of_heap lookup_omap.
by case: (h !! l)=> [[q [v|]]|] //=; destruct 1; auto.
✓ ({[l := (1%Qp, DecAgree v1)]} ⋅ h) →
✓ ({[l := (1%Qp, DecAgree v2)]} ⋅ h).
intros Hv l'; move: (Hv l'). destruct (decide (l' = l)) as [->|].
- rewrite !lookup_op !lookup_singleton.
by case: (h !! l)=> [x|] // /Some_valid/exclusive_l.
Lemma heap_alloc N E σ :
authG heap_lang Σ heapUR → nclose N ⊆ E →
ownP σ ={E}=> ∃ _ : heapG Σ, heap_ctx N ∧ [★ map] l↦v ∈ σ, l ↦ v.
intros. rewrite -{1}(from_to_heap σ). etrans.
apply (auth_alloc (ownP ∘ of_heap) N E); auto using to_heap_valid. }
apply pvs_mono, exist_elim=> γ.
rewrite -(exist_intro (HeapG _ _ γ)) /heap_ctx; apply and_mono_r.
rewrite /heap_mapsto /heap_name.
induction σ as [|l v σ Hl IH] using map_ind.
{ rewrite big_sepM_empty; apply True_intro. }
rewrite to_heap_insert big_sepM_insert //.
rewrite (insert_singleton_op (to_heap σ));
by rewrite auth_own_op IH.
Context `{heapG Σ}.
(** General properties of mapsto *)
Global Instance heap_mapsto_timeless l q v : TimelessP (l ↦{q} v).
Proof. rewrite /heap_mapsto. apply _. Qed.
Lemma heap_mapsto_op_eq l q1 q2 v : l ↦{q1} v ★ l ↦{q2} v ⊣⊢ l ↦{q1+q2} v.
Proof. by rewrite -auth_own_op op_singleton pair_op dec_agree_idemp. Qed.
l ↦{q1} v1 ★ l ↦{q2} v2 ⊣⊢ v1 = v2 ∧ l ↦{q1+q2} v1.
destruct (decide (v1 = v2)) as [->|].
{ by rewrite heap_mapsto_op_eq const_equiv // left_id. }
rewrite -auth_own_op op_singleton pair_op dec_agree_ne //.
apply (anti_symm (⊢)); last by apply const_elim_l.
rewrite auth_own_valid gmap_validI (forall_elim l) lookup_singleton.
rewrite option_validI prod_validI frac_validI discrete_valid. by apply const_elim_r.
Lemma heap_mapsto_op_split l q v : l ↦{q} v ⊣⊢ (l ↦{q/2} v ★ l ↦{q/2} v).
Proof. by rewrite heap_mapsto_op_eq Qp_div_2. Qed.
(** Weakest precondition *)
heap_ctx N ★ ▷ (∀ l, l ↦ v -★ Φ (LitV $ LitLoc l)) ⊢ WP Alloc e @ E {{ Φ }}.
iIntros {??} "[#Hinv HΦ]". rewrite /heap_ctx.
iPvs (auth_empty heap_name) as "Hheap".
iApply (auth_fsa heap_inv (wp_fsa (Alloc e)) _ N); simpl; eauto.
iFrame "Hinv Hheap". iIntros {h}. rewrite [∅ ⋅ h]left_id.
iIntros "[% Hheap]". rewrite /heap_inv.
iApply wp_alloc_pst; first done. iFrame "Hheap". iNext.
iIntros {l} "[% Hheap]". iExists (op {[ l := (1%Qp, DecAgree v) ]}), _, _.
rewrite [{[ _ := _ ]} ⋅ ∅]right_id.
rewrite -of_heap_insert -(insert_singleton_op h); last by apply of_heap_None.
iFrame "Hheap". iSplit.
{ iPureIntro; split; first done. by apply (insert_valid h). }
iIntros "Hheap". iApply "HΦ". by rewrite /heap_mapsto.
Qed.
heap_ctx N ★ ▷ l ↦{q} v ★ ▷ (l ↦{q} v -★ Φ v)
⊢ WP Load (Lit (LitLoc l)) @ E {{ Φ }}.
iIntros {?} "[#Hh [Hl HΦ]]". rewrite /heap_ctx /heap_mapsto.
iApply (auth_fsa' heap_inv (wp_fsa _) id _ N _
heap_name {[ l := (q, DecAgree v) ]}); simpl; eauto.
iFrame "Hh Hl". iIntros {h} "[% Hl]". rewrite /heap_inv.
iApply (wp_load_pst _ (<[l:=v]>(of_heap h)));first by rewrite lookup_insert.
rewrite of_heap_singleton_op //. iFrame "Hl". iNext.
Lemma wp_store N E l v' e v Φ :
to_val e = Some v → nclose N ⊆ E →
heap_ctx N ★ ▷ l ↦ v' ★ ▷ (l ↦ v -★ Φ (LitV LitUnit))
⊢ WP Store (Lit (LitLoc l)) e @ E {{ Φ }}.
iIntros {??} "[#Hh [Hl HΦ]]". rewrite /heap_ctx /heap_mapsto.
iApply (auth_fsa' heap_inv (wp_fsa _) (alter (λ _, (1%Qp, DecAgree v)) l) _
N _ heap_name {[ l := (1%Qp, DecAgree v') ]}); simpl; eauto.
iFrame "Hh Hl". iIntros {h} "[% Hl]". rewrite /heap_inv.
iApply (wp_store_pst _ (<[l:=v']>(of_heap h))); rewrite ?lookup_insert //.
rewrite alter_singleton insert_insert !of_heap_singleton_op; eauto.
iFrame "Hl". iNext. iIntros "$". iFrame "HΦ".
iPureIntro. eauto 10 with typeclass_instances.
Lemma wp_cas_fail N E l q v' e1 v1 e2 v2 Φ :
to_val e1 = Some v1 → to_val e2 = Some v2 → v' ≠ v1 → nclose N ⊆ E →
heap_ctx N ★ ▷ l ↦{q} v' ★ ▷ (l ↦{q} v' -★ Φ (LitV (LitBool false)))
⊢ WP CAS (Lit (LitLoc l)) e1 e2 @ E {{ Φ }}.
iIntros {????} "[#Hh [Hl HΦ]]". rewrite /heap_ctx /heap_mapsto.
iApply (auth_fsa' heap_inv (wp_fsa _) id _ N _
heap_name {[ l := (q, DecAgree v') ]}); simpl; eauto 10.
iFrame "Hh Hl". iIntros {h} "[% Hl]". rewrite /heap_inv.
iApply (wp_cas_fail_pst _ (<[l:=v']>(of_heap h))); rewrite ?lookup_insert //.
rewrite of_heap_singleton_op //. iFrame "Hl". iNext.
Lemma wp_cas_suc N E l e1 v1 e2 v2 Φ :
to_val e1 = Some v1 → to_val e2 = Some v2 → nclose N ⊆ E →
heap_ctx N ★ ▷ l ↦ v1 ★ ▷ (l ↦ v2 -★ Φ (LitV (LitBool true)))
⊢ WP CAS (Lit (LitLoc l)) e1 e2 @ E {{ Φ }}.
iIntros {???} "[#Hh [Hl HΦ]]". rewrite /heap_ctx /heap_mapsto.
iApply (auth_fsa' heap_inv (wp_fsa _) (alter (λ _, (1%Qp, DecAgree v2)) l)
_ N _ heap_name {[ l := (1%Qp, DecAgree v1) ]}); simpl; eauto 10.
iFrame "Hh Hl". iIntros {h} "[% Hl]". rewrite /heap_inv.
iApply (wp_cas_suc_pst _ (<[l:=v1]>(of_heap h))); rewrite ?lookup_insert //.
rewrite alter_singleton insert_insert !of_heap_singleton_op; eauto.
iFrame "Hl". iNext. iIntros "$". iFrame "HΦ".
iPureIntro. eauto 10 with typeclass_instances.
End heap.