Newer
Older
Module Type CORE_LANG.
(******************************************************************)
(** ** Syntax, machine state, and atomic reductions **)
(******************************************************************)
(** Expressions and values **)
Parameter is_value : expr -> Prop.
Definition value : Type := {e: expr | is_value e}.
Parameter is_value_dec : forall e, is_value e + ~is_value e.
(* fork and fRet *)
Parameter fork : expr -> expr.
Parameter fork_ret : expr.
Axiom fork_ret_is_value : is_value fork_ret.
Definition fork_ret_val : value := exist _ fork_ret fork_ret_is_value.
Axiom fork_not_value : forall e,
~is_value (fork e).
Axiom fork_inj : forall e1 e2,
fork e1 = fork e2 -> e1 = e2.
(** Evaluation contexts **)
Parameter empty_ctx : ectx.
Parameter comp_ctx : ectx -> ectx -> ectx.
Parameter fill : ectx -> expr -> expr.
(*
All of
comp_ctx_assoc
comp_ctx_inj_r
comp_ctx_emp_r
arise only in the proof of
step_same_ctx K K' e e' :
fill K e = fill K' e' ->
reducible e ->
reducible e' ->
K = K'.
Moreover, comp_ctx_positivity gets used only in step_same_ctx
and
atomic_fill e K :
atomic (fill K e) ->
~ is_value e ->
K = empty_ctx.
It might be simpler to (prove and) assume these two rather
than those four.
*)
comp_ctx K0 (comp_ctx K1 K2) = comp_ctx (comp_ctx K0 K1) K2.
Axiom comp_ctx_inj_r : forall K K1 K2,
comp_ctx K K1 = comp_ctx K K2 -> K1 = K2.
Axiom comp_ctx_emp_r : forall K,
comp_ctx K empty_ctx = K.
Axiom comp_ctx_positivity : forall K1 K2,
comp_ctx K1 K2 = empty_ctx -> K1 = empty_ctx /\ K2 = empty_ctx.
Axiom fill_comp : forall K1 K2 e, fill K1 (fill K2 e) = fill (comp_ctx K1 K2) e.
Axiom fill_inj_r : forall K e1 e2, fill K e1 = fill K e2 -> e1 = e2.
Axiom fill_empty : forall e, fill empty_ctx e = e.
Axiom fill_value : forall K e, is_value (fill K e) -> K = empty_ctx.
Axiom fill_fork : forall K e e', fork e' = fill K e -> K = empty_ctx.
(** Shared machine state (e.g., the heap) **)
(** Primitive (single thread) machine configurations **)
Definition prim_cfg : Type := (expr * state)%type.
(** The primitive atomic stepping relation **)
Parameter prim_step : prim_cfg -> prim_cfg -> Prop.
Definition reducible e: Prop :=
exists sigma cfg', prim_step (e, sigma) cfg'.
Definition stuck (e : expr) : Prop :=
e = fill K e' ->
Axiom fork_stuck :
forall K e, stuck (fill K (fork e) ).
Axiom values_stuck :
forall e, is_value e -> stuck e.
(* When something does a step, and another decomposition of the same
expression has a non-value e in the hole, then K is a left
sub-context of K' - in other words, e also contains the reducible
expression *)
Axiom step_by_value :
fill K e = fill K' e' ->
~ is_value e ->
(* Similar to above, buth with a fork instead of a reducible
expression *)
Axiom fork_by_value :
forall K K' e e',
fill K e = fill K' (fork e') ->
~ is_value e ->
(** Atomic expressions **)
Parameter atomic : expr -> Prop.
Axiom atomic_reducible :
forall e, atomic e -> reducible e.
Axiom atomic_step: forall e σ e' σ',
atomic e ->
prim_step (e, σ) (e', σ') ->
is_value e'.
End CORE_LANG.