Skip to content
Snippets Groups Projects
Commit ab9793a5 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Merge branch 'robbert/kmap' into 'master'

Add function `map_kmap` that transforms the keys of a finite map.

See merge request iris/stdpp!265
parents 558df4bc a35dedaf
No related branches found
No related tags found
No related merge requests found
...@@ -39,6 +39,7 @@ API-breaking change is listed. ...@@ -39,6 +39,7 @@ API-breaking change is listed.
+ Add new instance `cons_Permutation_inj_l : Inj (=) (≡ₚ) (.:: k).`. + Add new instance `cons_Permutation_inj_l : Inj (=) (≡ₚ) (.:: k).`.
+ Add lemma `Permutation_cross_split`. + Add lemma `Permutation_cross_split`.
+ Make lemma `elem_of_Permutation` a biimplication + Make lemma `elem_of_Permutation` a biimplication
- Add function `kmap` to transform the keys of finite maps.
The following `sed` script should perform most of the renaming The following `sed` script should perform most of the renaming
(on macOS, replace `sed` by `gsed`, installed via e.g. `brew install gnu-sed`): (on macOS, replace `sed` by `gsed`, installed via e.g. `brew install gnu-sed`):
......
...@@ -198,6 +198,15 @@ Proof. ...@@ -198,6 +198,15 @@ Proof.
naive_solver. naive_solver.
Qed. Qed.
Lemma dom_kmap `{!Elements K D, !FinSet K D, FinMapDom K2 M2 D2}
{A} (f : K K2) `{!Inj (=) (=) f} (m : M A) :
dom D2 (kmap (M2:=M2) f m) set_map f (dom D m).
Proof.
apply set_equiv. intros i.
rewrite !elem_of_dom, (lookup_kmap_is_Some _), elem_of_map.
by setoid_rewrite elem_of_dom.
Qed.
(** If [D] has Leibniz equality, we can show an even stronger result. This is a (** If [D] has Leibniz equality, we can show an even stronger result. This is a
common case e.g. when having a [gmap K A] where the key [K] has Leibniz equality common case e.g. when having a [gmap K A] where the key [K] has Leibniz equality
(and thus also [gset K], the usual domain) but the value type [A] does not. *) (and thus also [gset K], the usual domain) but the value type [A] does not. *)
...@@ -252,6 +261,11 @@ Section leibniz. ...@@ -252,6 +261,11 @@ Section leibniz.
Proof. unfold_leibniz. apply dom_union_inv. Qed. Proof. unfold_leibniz. apply dom_union_inv. Qed.
End leibniz. End leibniz.
Lemma dom_kmap_L `{!Elements K D, !FinSet K D, FinMapDom K2 M2 D2}
`{!LeibnizEquiv D2} {A} (f : K K2) `{!Inj (=) (=) f} (m : M A) :
dom D2 (kmap (M2:=M2) f m) = set_map f (dom D m).
Proof. unfold_leibniz. by apply dom_kmap. Qed.
(** * Set solver instances *) (** * Set solver instances *)
Global Instance set_unfold_dom_empty {A} i : SetUnfoldElemOf i (dom D (∅:M A)) False. Global Instance set_unfold_dom_empty {A} i : SetUnfoldElemOf i (dom D (∅:M A)) False.
Proof. constructor. by rewrite dom_empty, elem_of_empty. Qed. Proof. constructor. by rewrite dom_empty, elem_of_empty. Qed.
......
...@@ -124,6 +124,15 @@ Definition map_imap `{∀ A, Insert K A (M A), ∀ A, Empty (M A), ...@@ -124,6 +124,15 @@ Definition map_imap `{∀ A, Insert K A (M A), ∀ A, Empty (M A),
A, FinMapToList K A (M A)} {A B} (f : K A option B) (m : M A) : M B := A, FinMapToList K A (M A)} {A B} (f : K A option B) (m : M A) : M B :=
list_to_map (omap (λ ix, (fst ix ,.) <$> curry f ix) (map_to_list m)). list_to_map (omap (λ ix, (fst ix ,.) <$> curry f ix) (map_to_list m)).
(** Given a function [f : K1 → K2], the function [kmap f] turns a maps with
keys of type [K1] into a map with keys of type [K2]. The function [kmap f]
is only well-behaved if [f] is injective, as otherwise it could map multiple
entries into the same entry. All lemmas about [kmap f] thus have the premise
[Inj (=) (=) f]. *)
Definition kmap `{ A, Insert K2 A (M2 A), A, Empty (M2 A),
A, FinMapToList K1 A (M1 A)} {A} (f : K1 K2) (m : M1 A) : M2 A :=
list_to_map (fmap (prod_map f id) (map_to_list m)).
(* The zip operation on maps combines two maps key-wise. The keys of resulting (* The zip operation on maps combines two maps key-wise. The keys of resulting
map correspond to the keys that are in both maps. *) map correspond to the keys that are in both maps. *)
Definition map_zip_with `{Merge M} {A B C} (f : A B C) : M A M B M C := Definition map_zip_with `{Merge M} {A B C} (f : A B C) : M A M B M C :=
...@@ -2524,6 +2533,158 @@ Section map_seq. ...@@ -2524,6 +2533,158 @@ Section map_seq.
Qed. Qed.
End map_seq. End map_seq.
Section kmap.
Context `{FinMap K1 M1} `{FinMap K2 M2}.
Context (f : K1 K2) `{!Inj (=) (=) f}.
Local Notation kmap := (kmap (M1:=M1) (M2:=M2)).
Lemma lookup_kmap_Some {A} (m : M1 A) (j : K2) x :
kmap f m !! j = Some x i, j = f i m !! i = Some x.
Proof.
assert ( x',
(j, x) prod_map f id <$> map_to_list m
(j, x') prod_map f id <$> map_to_list m x = x').
{ intros x'. rewrite !elem_of_list_fmap.
intros [[j' y1] [??]] [[? y2] [??]]; simplify_eq/=.
by apply (map_to_list_unique m j'). }
unfold kmap. rewrite <-elem_of_list_to_map', elem_of_list_fmap by done.
setoid_rewrite elem_of_map_to_list'. split.
- intros [[??] [??]]; naive_solver.
- intros [? [??]]. eexists (_, _); naive_solver.
Qed.
Lemma lookup_kmap_is_Some {A} (m : M1 A) (j : K2) :
is_Some (kmap f m !! j) i, j = f i is_Some (m !! i).
Proof. unfold is_Some. setoid_rewrite lookup_kmap_Some. naive_solver. Qed.
Lemma lookup_kmap_None {A} (m : M1 A) (j : K2) :
kmap f m !! j = None i, j = f i m !! i = None.
Proof.
setoid_rewrite eq_None_not_Some.
rewrite lookup_kmap_is_Some. naive_solver.
Qed.
(** Note that to state a lemma [map_kmap f m !! j = ...] we need to have a
partial inverse [f_inv] of [f] (which one cannot define constructively). Then
we could write [map_kmap f m !! j = (i ← f_inv j; m !! i)] *)
Lemma lookup_kmap {A} (m : M1 A) (i : K1) :
kmap f m !! (f i) = m !! i.
Proof. apply option_eq. setoid_rewrite lookup_kmap_Some. naive_solver. Qed.
Lemma lookup_total_kmap `{Inhabited A} (m : M1 A) (i : K1) :
kmap f m !!! (f i) = m !!! i.
Proof. by rewrite !lookup_total_alt, lookup_kmap. Qed.
Global Instance kmap_inj {A} : Inj (=@{M1 A}) (=) (kmap f).
Proof.
intros m1 m2 Hm. apply map_eq. intros i. by rewrite <-!lookup_kmap, Hm.
Qed.
Lemma kmap_empty {A} : kmap f =@{M2 A} ∅.
Proof. unfold kmap. by rewrite map_to_list_empty. Qed.
Lemma kmap_empty_inv {A} (m : M1 A) : kmap f m = m = ∅.
Proof.
intros Hm. apply map_empty; intros i.
apply (lookup_kmap_None _ (f i)); [|done]. by rewrite Hm, lookup_empty.
Qed.
Lemma kmap_singleton {A} i (x : A) : kmap f {[ i := x ]} = {[ f i := x ]}.
Proof. unfold kmap. by rewrite map_to_list_singleton. Qed.
Lemma kmap_partial_alter {A} (g : option A option A) (m : M1 A) i :
kmap f (partial_alter g i m) = partial_alter g (f i) (kmap f m).
Proof.
apply map_eq; intros j. apply option_eq; intros y.
destruct (decide (j = f i)) as [->|?].
{ by rewrite lookup_partial_alter, !lookup_kmap, lookup_partial_alter. }
rewrite lookup_partial_alter_ne, !lookup_kmap_Some by done. split.
- intros [i' [? Hm]]; simplify_eq/=.
rewrite lookup_partial_alter_ne in Hm by naive_solver. naive_solver.
- intros [i' [? Hm]]; simplify_eq/=. exists i'.
rewrite lookup_partial_alter_ne by naive_solver. naive_solver.
Qed.
Lemma kmap_insert {A} (m : M1 A) i x :
kmap f (<[i:=x]> m) = <[f i:=x]> (kmap f m).
Proof. apply kmap_partial_alter. Qed.
Lemma kmap_delete {A} (m : M1 A) i :
kmap f (delete i m) = delete (f i) (kmap f m).
Proof. apply kmap_partial_alter. Qed.
Lemma kmap_alter {A} (g : A A) (m : M1 A) i :
kmap f (alter g i m) = alter g (f i) (kmap f m).
Proof. apply kmap_partial_alter. Qed.
Lemma kmap_merge {A B C} (g : option A option B option C)
`{!DiagNone g} (m1 : M1 A) (m2 : M1 B) :
kmap f (merge g m1 m2) = merge g (kmap f m1) (kmap f m2).
Proof.
apply map_eq; intros j. apply option_eq; intros y.
rewrite (lookup_merge g), lookup_kmap_Some.
setoid_rewrite (lookup_merge g). split.
{ intros [i [-> ?]]. by rewrite !lookup_kmap. }
intros Hg. destruct (kmap f m1 !! j) as [x1|] eqn:Hm1.
{ apply lookup_kmap_Some in Hm1 as (i&->&Hm1i).
exists i. split; [done|]. by rewrite Hm1i, <-lookup_kmap. }
destruct (kmap f m2 !! j) as [x2|] eqn:Hm2.
{ apply lookup_kmap_Some in Hm2 as (i&->&Hm2i).
exists i. split; [done|]. by rewrite Hm2i, <-lookup_kmap, Hm1. }
unfold DiagNone in *. naive_solver.
Qed.
Lemma kmap_union_with {A} (g : A A option A) (m1 m2 : M1 A) :
kmap f (union_with g m1 m2)
= union_with g (kmap f m1) (kmap f m2).
Proof. apply (kmap_merge _). Qed.
Lemma kmap_intersection_with {A} (g : A A option A) (m1 m2 : M1 A) :
kmap f (intersection_with g m1 m2)
= intersection_with g (kmap f m1) (kmap f m2).
Proof. apply (kmap_merge _). Qed.
Lemma kmap_difference_with {A} (g : A A option A) (m1 m2 : M1 A) :
kmap f (difference_with g m1 m2)
= difference_with g (kmap f m1) (kmap f m2).
Proof. apply (kmap_merge _). Qed.
Lemma kmap_union {A} (m1 m2 : M1 A) :
kmap f (m1 m2) = kmap f m1 kmap f m2.
Proof. apply kmap_union_with. Qed.
Lemma kmap_intersection {A} (m1 m2 : M1 A) :
kmap f (m1 m2) = kmap f m1 kmap f m2.
Proof. apply kmap_intersection_with. Qed.
Lemma kmap_difference {A} (m1 m2 : M1 A) :
kmap f (m1 m2) = kmap f m1 kmap f m2.
Proof. apply (kmap_merge _). Qed.
Lemma kmap_zip_with {A B C} (g : A B C) (m1 : M1 A) (m2 : M1 B) :
kmap f (map_zip_with g m1 m2) = map_zip_with g (kmap f m1) (kmap f m2).
Proof. by apply kmap_merge. Qed.
Lemma kmap_imap {A B} (g : K2 A option B) (m : M1 A) :
kmap f (map_imap (g f) m) = map_imap g (kmap f m).
Proof.
apply map_eq; intros j. apply option_eq; intros y.
rewrite map_lookup_imap, bind_Some. setoid_rewrite lookup_kmap_Some.
setoid_rewrite map_lookup_imap. setoid_rewrite bind_Some. naive_solver.
Qed.
Lemma kmap_omap {A B} (g : A option B) (m : M1 A) :
kmap f (omap g m) = omap g (kmap f m).
Proof.
apply map_eq; intros j. apply option_eq; intros y.
rewrite lookup_omap, bind_Some. setoid_rewrite lookup_kmap_Some.
setoid_rewrite lookup_omap. setoid_rewrite bind_Some. naive_solver.
Qed.
Lemma kmap_fmap {A B} (g : A B) (m : M1 A) :
kmap f (g <$> m) = g <$> (kmap f m).
Proof. by rewrite !map_fmap_alt, kmap_omap. Qed.
Lemma map_disjoint_kmap {A} (m1 m2 : M1 A) :
kmap f m1 ## kmap f m2 m1 ## m2.
Proof.
rewrite !map_disjoint_spec. setoid_rewrite lookup_kmap_Some. naive_solver.
Qed.
Lemma map_disjoint_subseteq {A} (m1 m2 : M1 A) :
kmap f m1 kmap f m2 m1 m2.
Proof.
rewrite !map_subseteq_spec. setoid_rewrite lookup_kmap_Some. naive_solver.
Qed.
Lemma map_disjoint_subset {A} (m1 m2 : M1 A) :
kmap f m1 kmap f m2 m1 m2.
Proof. unfold strict. by rewrite !map_disjoint_subseteq. Qed.
End kmap.
(** * Tactics *) (** * Tactics *)
(** The tactic [decompose_map_disjoint] simplifies occurrences of [disjoint] (** The tactic [decompose_map_disjoint] simplifies occurrences of [disjoint]
in the hypotheses that involve the empty map [∅], the union [(∪)] or insert in the hypotheses that involve the empty map [∅], the union [(∪)] or insert
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment