Skip to content
Snippets Groups Projects
Commit 8c81e4f8 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Port `Qp` to use `SProp`.

parent b8ee7f6b
No related branches found
No related tags found
No related merge requests found
...@@ -273,13 +273,8 @@ Next Obligation. ...@@ -273,13 +273,8 @@ Next Obligation.
Qed. Qed.
Global Program Instance Qp_countable : Countable Qp := Global Program Instance Qp_countable : Countable Qp :=
inj_countable inj_countable Qp_to_Qc Qc_to_Qp _.
Qp_to_Qc Next Obligation. intros p. by apply Qc_to_Qp_Some. Qed.
(λ p : Qc, guard (0 < p)%Qc as Hp; Some (mk_Qp p Hp)) _.
Next Obligation.
intros [p Hp]. unfold mguard, option_guard; simpl.
case_match; [|done]. f_equal. by apply Qp_to_Qc_inj_iff.
Qed.
Global Program Instance fin_countable n : Countable (fin n) := Global Program Instance fin_countable n : Countable (fin n) :=
inj_countable inj_countable
......
...@@ -3,7 +3,7 @@ natural numbers, and the type [Z] for integers. It also declares some useful ...@@ -3,7 +3,7 @@ natural numbers, and the type [Z] for integers. It also declares some useful
notations. *) notations. *)
From Coq Require Export EqdepFacts PArith NArith ZArith NPeano. From Coq Require Export EqdepFacts PArith NArith ZArith NPeano.
From Coq Require Import QArith Qcanon. From Coq Require Import QArith Qcanon.
From stdpp Require Export base decidable option. From stdpp Require Export base decidable option sprop.
From stdpp Require Import options. From stdpp Require Import options.
Local Open Scope nat_scope. Local Open Scope nat_scope.
...@@ -721,77 +721,104 @@ Qed. ...@@ -721,77 +721,104 @@ Qed.
Local Close Scope Qc_scope. Local Close Scope Qc_scope.
(** * Positive rationals *) (** * Positive rationals *)
Declare Scope Qp_scope. Definition Qp_red (q : positive * positive) : positive * positive :=
Delimit Scope Qp_scope with Qp. (Pos.ggcd (q.1) (q.2)).2.
Definition Qp_wf (q : positive * positive) : SProp :=
sprop_decide (Qp_red q = q).
Lemma Qp_red_wf q : Qp_wf (Qp_red q).
Proof.
apply sprop_decide_pack. unfold Qp_red. destruct q as [n d]; simpl.
pose proof (Pos.ggcd_greatest n d) as Hgreatest.
destruct (Pos.ggcd n d) as [q [r1 r2]] eqn:?; simpl in *.
pose proof (Pos.ggcd_correct_divisors r1 r2) as Hdiv.
destruct (Pos.ggcd r1 r2) as [q' [r1' r2']] eqn:?; simpl in *.
destruct Hdiv as [-> ->].
rewrite (Hgreatest q') by (by apply Pos.divide_mul_l, Z.divide_Zpos).
by rewrite !Pos.mul_1_l.
Qed.
Record Qp := QP' {
Qp_car : positive * positive;
Qp_prf : Qp_wf Qp_car;
}.
Definition QP (n d : positive) : Qp :=
QP' (Qp_red (n,d)) (Qp_red_wf _).
Record Qp := mk_Qp { Qp_to_Qc : Qc ; Qp_prf : (0 < Qp_to_Qc)%Qc }.
Add Printing Constructor Qp. Add Printing Constructor Qp.
Declare Scope Qp_scope.
Delimit Scope Qp_scope with Qp.
Bind Scope Qp_scope with Qp. Bind Scope Qp_scope with Qp.
Global Arguments Qp_to_Qc _%Qp : assert.
Local Open Scope Qp_scope. Local Open Scope Qp_scope.
Lemma Qp_to_Qc_inj_iff p q : Qp_to_Qc p = Qp_to_Qc q p = q. (** ** Operations *)
Proof.
split; [|by intros ->].
destruct p, q; intros; simplify_eq/=; f_equal; apply (proof_irrel _).
Qed.
Global Instance Qp_eq_dec : EqDecision Qp.
Proof.
refine (λ p q, cast_if (decide (Qp_to_Qc p = Qp_to_Qc q)));
by rewrite <-Qp_to_Qc_inj_iff.
Defined.
Definition Qp_add (p q : Qp) : Qp := Definition Qp_add (p q : Qp) : Qp :=
let 'mk_Qp p Hp := p in let 'mk_Qp q Hq := q in let '(QP' (pn,pd) _) := p in let '(QP' (qn,qd) _) := q in
mk_Qp (p + q) (Qcplus_pos_pos _ _ Hp Hq). QP (pn * qd + qn * pd) (pd * qd).
Global Arguments Qp_add : simpl never. Global Arguments Qp_add : simpl never.
Definition Qp_sub (p q : Qp) : option Qp := Definition Qp_sub (p q : Qp) : option Qp :=
let 'mk_Qp p Hp := p in let 'mk_Qp q Hq := q in let '(QP' (pn,pd) _) := p in let '(QP' (qn,qd) _) := q in
let pq := (p - q)%Qc in guard (qn * pd < pn * qd)%positive;
guard (0 < pq)%Qc as Hpq; Some (mk_Qp pq Hpq). Some (QP (pn * qd - qn * pd) (pd * qd)).
Global Arguments Qp_sub : simpl never. Global Arguments Qp_sub : simpl never.
Definition Qp_mul (p q : Qp) : Qp := Definition Qp_mul (p q : Qp) : Qp :=
let 'mk_Qp p Hp := p in let 'mk_Qp q Hq := q in let '(QP' (pn,pd) _) := p in let '(QP' (qn,qd) _) := q in
mk_Qp (p * q) (Qcmult_pos_pos _ _ Hp Hq). QP (pn * qn) (pd * qd).
Global Arguments Qp_mul : simpl never. Global Arguments Qp_mul : simpl never.
Definition Qp_inv (q : Qp) : Qp := Definition Qp_inv (q : Qp) : Qp :=
let 'mk_Qp q Hq := q return _ in let '(QP' (qn,qd) _) := q in
mk_Qp (/ q)%Qc (Qcinv_pos _ Hq). QP qd qn.
Global Arguments Qp_inv : simpl never. Global Arguments Qp_inv : simpl never.
Definition Qp_div (p q : Qp) : Qp := Qp_mul p (Qp_inv q). Definition Qp_div (p q : Qp) : Qp := Qp_mul p (Qp_inv q).
Typeclasses Opaque Qp_div. Typeclasses Opaque Qp_div.
Global Arguments Qp_div : simpl never. Global Arguments Qp_div : simpl never.
Definition pos_to_Qp (n : positive) : Qp := QP n 1.
Global Arguments pos_to_Qp : simpl never.
Definition Qp_to_Q (q : Qp) : Q :=
let '(QP' (pn,pd) _) := q in
Qmake (Z.pos pn) pd.
Lemma Qred_Qp_to_Q q : Qred (Qp_to_Q q) = Qp_to_Q q.
Proof.
destruct q as [[qn qd] Hq]; unfold Qred; simpl.
apply sprop_decide_unpack in Hq; unfold Qp_red in Hq; simpl in *.
destruct (Pos.ggcd qn qd) as [? [??]]; by simplify_eq/=.
Qed.
Definition Qp_to_Qc (q : Qp) : Qc := Qcmake (Qp_to_Q q) (Qred_Qp_to_Q q).
Definition Qc_to_Qp (q : Qc) : option Qp :=
match q return _ with
| Qcmake (Qmake (Z.pos n) d) _ => Some (QP n d)
| _ => None
end.
Definition Qp_le (p q : Qp) : Prop :=
let '(QP' (pn,pd) _) := p in let '(QP' (qn,qd) _) := q in
(pn * qd qn * pd)%positive.
Definition Qp_lt (p q : Qp) : Prop :=
let '(QP' (pn,pd) _) := p in let '(QP' (qn,qd) _) := q in
(pn * qd < qn * pd)%positive.
(** ** Notations *)
Infix "+" := Qp_add : Qp_scope. Infix "+" := Qp_add : Qp_scope.
Infix "-" := Qp_sub : Qp_scope. Infix "-" := Qp_sub : Qp_scope.
Infix "*" := Qp_mul : Qp_scope. Infix "*" := Qp_mul : Qp_scope.
Notation "/ q" := (Qp_inv q) : Qp_scope. Notation "/ q" := (Qp_inv q) : Qp_scope.
Infix "/" := Qp_div : Qp_scope. Infix "/" := Qp_div : Qp_scope.
Lemma Qp_to_Qc_inj_add p q : (Qp_to_Qc (p + q) = Qp_to_Qc p + Qp_to_Qc q)%Qc.
Proof. by destruct p, q. Qed.
Lemma Qp_to_Qc_inj_mul p q : (Qp_to_Qc (p * q) = Qp_to_Qc p * Qp_to_Qc q)%Qc.
Proof. by destruct p, q. Qed.
Program Definition pos_to_Qp (n : positive) : Qp := mk_Qp (Qc_of_Z $ Z.pos n) _.
Next Obligation. intros n. by rewrite <-Z2Qc_inj_0, <-Z2Qc_inj_lt. Qed.
Global Arguments pos_to_Qp : simpl never.
Notation "1" := (pos_to_Qp 1) : Qp_scope. Notation "1" := (pos_to_Qp 1) : Qp_scope.
Notation "2" := (pos_to_Qp 2) : Qp_scope. Notation "2" := (pos_to_Qp 2) : Qp_scope.
Notation "3" := (pos_to_Qp 3) : Qp_scope. Notation "3" := (pos_to_Qp 3) : Qp_scope.
Notation "4" := (pos_to_Qp 4) : Qp_scope. Notation "4" := (pos_to_Qp 4) : Qp_scope.
Definition Qp_le (p q : Qp) : Prop :=
let 'mk_Qp p _ := p in let 'mk_Qp q _ := q in (p q)%Qc.
Definition Qp_lt (p q : Qp) : Prop :=
let 'mk_Qp p _ := p in let 'mk_Qp q _ := q in (p < q)%Qc.
Infix "≤" := Qp_le : Qp_scope. Infix "≤" := Qp_le : Qp_scope.
Infix "<" := Qp_lt : Qp_scope. Infix "<" := Qp_lt : Qp_scope.
Notation "p ≤ q ≤ r" := (p q q r) : Qp_scope. Notation "p ≤ q ≤ r" := (p q q r) : Qp_scope.
...@@ -804,56 +831,141 @@ Notation "(<)" := Qp_lt (only parsing) : Qp_scope. ...@@ -804,56 +831,141 @@ Notation "(<)" := Qp_lt (only parsing) : Qp_scope.
Global Hint Extern 0 (_ _)%Qp => reflexivity : core. Global Hint Extern 0 (_ _)%Qp => reflexivity : core.
(** ** Properties about the conversion to [Qc] *)
(** After having proved these, we never break the [Qp] abstraction and derive
all [Qp] properties from the corresponding properties for [Qc]. *)
Lemma Qp_to_Qc_pos p : (0 < Qp_to_Qc p)%Qc.
Proof. destruct p as [[pn pd] Hp]. unfold Qclt, Qlt; simpl; lia. Qed.
Lemma Qp_to_Qc_inj_add p q : Qp_to_Qc (p + q) = (Qp_to_Qc p + Qp_to_Qc q)%Qc.
Proof.
destruct p as [[pn pd] Hp], q as [[qn qd] Hq]; simpl. unfold Qp_add.
apply Qc_is_canon; simpl. unfold Qeq, Qp_red, Qred; simpl.
by destruct (Pos.ggcd _ _) as [? [??]].
Qed.
Lemma Qp_to_Qc_inj_sub p q :
Qp_to_Qc <$> (p - q) =
guard (Qp_to_Qc q < Qp_to_Qc p)%Qc; Some (Qp_to_Qc p - Qp_to_Qc q)%Qc.
Proof.
destruct p as [[pn pd] Hp], q as [[qn qd] Hq]; simpl. unfold Qp_sub.
case_option_guard as Hpq; [|by rewrite option_guard_False].
rewrite option_guard_True by done; f_equal/=.
apply Qc_is_canon; simpl. rewrite (Qred_correct (- _)).
unfold Qeq, Qp_red, Qred; simpl.
replace (Z.pos pn * Z.pos qd + - Z.pos qn * Z.pos pd)%Z
with (Z.pos (pn * qd - qn * pd)) by lia; simpl.
by destruct (Pos.ggcd _ _) as [? [??]].
Qed.
Lemma Qp_to_Qc_inj_mul p q : Qp_to_Qc (p * q) = (Qp_to_Qc p * Qp_to_Qc q)%Qc.
Proof.
destruct p as [[pn pd] Hp], q as [[qn qd] Hq]; simpl.
apply Qc_is_canon; simpl. unfold Qeq, Qp_red, Qred; simpl.
by destruct (Pos.ggcd _ _) as [? [??]].
Qed.
Lemma Qp_to_Qc_inj_inv p : Qp_to_Qc (/ p) = (/ Qp_to_Qc p)%Qc.
Proof.
destruct p as [[pn pd] Hp].
apply Qc_is_canon; simpl. unfold Qeq, Qp_red, Qred; simpl.
by destruct (Pos.ggcd _ _) as [? [??]].
Qed.
Lemma Qp_to_Qc_inj_div p q : Qp_to_Qc (p / q) = (Qp_to_Qc p / Qp_to_Qc q)%Qc.
Proof. unfold Qp_div. by rewrite Qp_to_Qc_inj_mul, Qp_to_Qc_inj_inv. Qed.
Lemma Qp_to_Qc_inj_iff p q : Qp_to_Qc p = Qp_to_Qc q p = q.
Proof.
split; [|by intros ->].
destruct p as [[pn pd] Hp], q as [[qn qd] Hq]; simpl. by intros [= -> ->].
Qed.
Lemma Qp_to_Qc_inj_le p q : p q (Qp_to_Qc p Qp_to_Qc q)%Qc. Lemma Qp_to_Qc_inj_le p q : p q (Qp_to_Qc p Qp_to_Qc q)%Qc.
Proof. by destruct p, q. Qed. Proof. by destruct p as [[pn pd] ?], q as [[qn qd] ?]. Qed.
Lemma Qp_to_Qc_inj_lt p q : p < q (Qp_to_Qc p < Qp_to_Qc q)%Qc. Lemma Qp_to_Qc_inj_lt p q : p < q (Qp_to_Qc p < Qp_to_Qc q)%Qc.
Proof. by destruct p, q. Qed. Proof. by destruct p as [[pn pd] ?], q as [[qn qd] ?]. Qed.
Lemma Qp_to_Qc_pos_to_Qp n : Qp_to_Qc (pos_to_Qp n) = Qc_of_Z (Z.pos n).
Proof.
apply Qc_is_canon. unfold Qeq. simpl. unfold Qp_red; simpl.
pose proof (Pos.ggcd_correct_divisors n 1) as Hdiv.
destruct (Pos.ggcd _ _) as [p [r1 r2]]; simpl in *.
destruct Hdiv as [-> ?].
rewrite (Pos.mul_eq_1_l p r2), (Pos.mul_eq_1_r p r2) by done. lia.
Qed.
Lemma Qc_to_Qp_Some p q : Qc_to_Qp p = Some q p = Qp_to_Qc q.
Proof.
split.
- intros Hpq. destruct p as [[[|pn|] pd] Hp]; simplify_eq/=.
apply Qc_is_canon; simpl. rewrite <-Hp. unfold Qeq, Qp_red, Qred; simpl.
by destruct (Pos.ggcd _ _) as [? [??]].
- intros ->. destruct q as [[qn qd] Hq]; simpl.
f_equal. unfold QP.
generalize (sprop_decide_unpack _ Hq). generalize (Qp_red_wf (qn, qd)).
generalize (Qp_red (qn, qd)). by intros ?? ->.
Qed.
(** ** Basic type class instances *)
Global Instance Qp_eq_dec : EqDecision Qp.
Proof.
refine (λ p q, cast_if (decide (Qp_to_Qc p = Qp_to_Qc q)));
by rewrite <-Qp_to_Qc_inj_iff.
Defined.
Global Instance Qp_le_dec : RelDecision (). Global Instance Qp_le_dec : RelDecision ().
Proof. Proof.
refine (λ p q, cast_if (decide (Qp_to_Qc p Qp_to_Qc q)%Qc)); refine (λ p q, cast_if (decide (Qp_to_Qc p Qp_to_Qc q)%Qc));
by rewrite Qp_to_Qc_inj_le. by rewrite Qp_to_Qc_inj_le.
Qed. Defined.
Global Instance Qp_lt_dec : RelDecision (<). Global Instance Qp_lt_dec : RelDecision (<).
Proof. Proof.
refine (λ p q, cast_if (decide (Qp_to_Qc p < Qp_to_Qc q)%Qc)); refine (λ p q, cast_if (decide (Qp_to_Qc p < Qp_to_Qc q)%Qc));
by rewrite Qp_to_Qc_inj_lt. by rewrite Qp_to_Qc_inj_lt.
Qed. Defined.
Global Instance Qp_lt_pi p q : ProofIrrel (p < q). Global Instance Qp_lt_pi p q : ProofIrrel (p < q).
Proof. destruct p, q; apply _. Qed. Proof.
destruct p as [[pn pd] ?], q as [[qn qd] ?]. unfold Qp_lt, Pos.lt. apply _.
Qed.
Global Instance Qp_inhabited : Inhabited Qp := populate 1.
(** ** Lattice structure *)
Definition Qp_max (q p : Qp) : Qp := if decide (q p) then p else q. Definition Qp_max (q p : Qp) : Qp := if decide (q p) then p else q.
Definition Qp_min (q p : Qp) : Qp := if decide (q p) then q else p. Definition Qp_min (q p : Qp) : Qp := if decide (q p) then q else p.
Infix "`max`" := Qp_max : Qp_scope. Infix "`max`" := Qp_max : Qp_scope.
Infix "`min`" := Qp_min : Qp_scope. Infix "`min`" := Qp_min : Qp_scope.
Global Instance Qp_inhabited : Inhabited Qp := populate 1. (** ** Algebraic properties *)
Global Instance Qp_add_assoc : Assoc (=) Qp_add. Global Instance Qp_add_assoc : Assoc (=) Qp_add.
Proof. intros [p ?] [q ?] [r ?]; apply Qp_to_Qc_inj_iff, Qcplus_assoc. Qed. Proof.
intros p q r. apply Qp_to_Qc_inj_iff.
by rewrite !Qp_to_Qc_inj_add, Qcplus_assoc.
Qed.
Global Instance Qp_add_comm : Comm (=) Qp_add. Global Instance Qp_add_comm : Comm (=) Qp_add.
Proof. intros [p ?] [q ?]; apply Qp_to_Qc_inj_iff, Qcplus_comm. Qed. Proof.
intros p q. apply Qp_to_Qc_inj_iff.
by rewrite !Qp_to_Qc_inj_add, Qcplus_comm.
Qed.
Global Instance Qp_add_inj_r p : Inj (=) (=) (Qp_add p). Global Instance Qp_add_inj_r p : Inj (=) (=) (Qp_add p).
Proof. Proof.
destruct p as [p ?]. intros q1 q2. rewrite <-!Qp_to_Qc_inj_iff, !Qp_to_Qc_inj_add.
intros [q1 ?] [q2 ?]. rewrite <-!Qp_to_Qc_inj_iff; simpl. apply (inj (Qcplus p)). apply (inj (Qcplus (Qp_to_Qc p))).
Qed. Qed.
Global Instance Qp_add_inj_l p : Inj (=) (=) (λ q, q + p). Global Instance Qp_add_inj_l p : Inj (=) (=) (λ q, q + p).
Proof. Proof.
destruct p as [p ?]. intros q1 q2. rewrite <-!Qp_to_Qc_inj_iff, !Qp_to_Qc_inj_add.
intros [q1 ?] [q2 ?]. rewrite <-!Qp_to_Qc_inj_iff; simpl. apply (inj (λ q, q + p)%Qc). apply (inj (λ q, q + Qp_to_Qc p)%Qc).
Qed. Qed.
Global Instance Qp_mul_assoc : Assoc (=) Qp_mul. Global Instance Qp_mul_assoc : Assoc (=) Qp_mul.
Proof. intros [p ?] [q ?] [r ?]. apply Qp_to_Qc_inj_iff, Qcmult_assoc. Qed. Proof.
intros p q r. apply Qp_to_Qc_inj_iff.
by rewrite !Qp_to_Qc_inj_mul, Qcmult_assoc.
Qed.
Global Instance Qp_mul_comm : Comm (=) Qp_mul. Global Instance Qp_mul_comm : Comm (=) Qp_mul.
Proof. intros [p ?] [q ?]; apply Qp_to_Qc_inj_iff, Qcmult_comm. Qed. Proof.
intros p q. apply Qp_to_Qc_inj_iff.
by rewrite !Qp_to_Qc_inj_mul, Qcmult_comm.
Qed.
Global Instance Qp_mul_inj_r p : Inj (=) (=) (Qp_mul p). Global Instance Qp_mul_inj_r p : Inj (=) (=) (Qp_mul p).
Proof. Proof.
destruct p as [p ?]. intros [q1 ?] [q2 ?]. rewrite <-!Qp_to_Qc_inj_iff; simpl. intros q1 q2. rewrite <-!Qp_to_Qc_inj_iff, !Qp_to_Qc_inj_mul.
intros Hpq. intros Hpq.
apply (anti_symm Qcle); apply (Qcmult_le_mono_pos_l _ _ p); by rewrite ?Hpq. apply (anti_symm Qcle); apply (Qcmult_le_mono_pos_l _ _ (Qp_to_Qc p));
first [apply Qp_to_Qc_pos|by rewrite Hpq].
Qed. Qed.
Global Instance Qp_mul_inj_l p : Inj (=) (=) (λ q, q * p). Global Instance Qp_mul_inj_l p : Inj (=) (=) (λ q, q * p).
Proof. Proof.
...@@ -861,23 +973,31 @@ Proof. ...@@ -861,23 +973,31 @@ Proof.
Qed. Qed.
Lemma Qp_mul_add_distr_l p q r : p * (q + r) = p * q + p * r. Lemma Qp_mul_add_distr_l p q r : p * (q + r) = p * q + p * r.
Proof. destruct p, q, r; by apply Qp_to_Qc_inj_iff, Qcmult_plus_distr_r. Qed. Proof.
by rewrite <-Qp_to_Qc_inj_iff, Qp_to_Qc_inj_add,
!Qp_to_Qc_inj_mul, Qp_to_Qc_inj_add, Qcmult_plus_distr_r.
Qed.
Lemma Qp_mul_add_distr_r p q r : (p + q) * r = p * r + q * r. Lemma Qp_mul_add_distr_r p q r : (p + q) * r = p * r + q * r.
Proof. destruct p, q, r; by apply Qp_to_Qc_inj_iff, Qcmult_plus_distr_l. Qed. Proof.
by rewrite <-Qp_to_Qc_inj_iff, Qp_to_Qc_inj_add,
!Qp_to_Qc_inj_mul, Qp_to_Qc_inj_add, Qcmult_plus_distr_l.
Qed.
Lemma Qp_mul_1_l p : 1 * p = p. Lemma Qp_mul_1_l p : 1 * p = p.
Proof. destruct p; apply Qp_to_Qc_inj_iff, Qcmult_1_l. Qed. Proof. rewrite <-Qp_to_Qc_inj_iff, Qp_to_Qc_inj_mul. apply Qcmult_1_l. Qed.
Lemma Qp_mul_1_r p : p * 1 = p. Lemma Qp_mul_1_r p : p * 1 = p.
Proof. destruct p; apply Qp_to_Qc_inj_iff, Qcmult_1_r. Qed. Proof. rewrite <-Qp_to_Qc_inj_iff, Qp_to_Qc_inj_mul. apply Qcmult_1_r. Qed.
Lemma Qp_1_1 : 1 + 1 = 2. Lemma Qp_1_1 : 1 + 1 = 2.
Proof. compute_done. Qed. Proof. done. Qed.
Lemma Qp_add_diag p : p + p = 2 * p. Lemma Qp_add_diag p : p + p = 2 * p.
Proof. by rewrite <-Qp_1_1, Qp_mul_add_distr_r, !Qp_mul_1_l. Qed. Proof. by rewrite <-Qp_1_1, Qp_mul_add_distr_r, !Qp_mul_1_l. Qed.
Lemma Qp_mul_inv_l p : /p * p = 1. Lemma Qp_mul_inv_l p : /p * p = 1.
Proof. Proof.
destruct p as [p ?]; apply Qp_to_Qc_inj_iff; simpl. rewrite <-Qp_to_Qc_inj_iff, Qp_to_Qc_inj_mul, Qp_to_Qc_inj_inv.
by rewrite Qcmult_inv_l, Z2Qc_inj_1 by (by apply not_symmetry, Qclt_not_eq). assert (Qp_to_Qc p 0)%Qc.
{ apply not_symmetry, Qclt_not_eq, Qp_to_Qc_pos. }
rewrite Qcmult_inv_l by done. by apply Qc_is_canon.
Qed. Qed.
Lemma Qp_mul_inv_r p : p * /p = 1. Lemma Qp_mul_inv_r p : p * /p = 1.
Proof. by rewrite (comm_L Qp_mul), Qp_mul_inv_l. Qed. Proof. by rewrite (comm_L Qp_mul), Qp_mul_inv_l. Qed.
...@@ -898,11 +1018,11 @@ Proof. ...@@ -898,11 +1018,11 @@ Proof.
by rewrite Qp_mul_inv_l, Hp, Qp_mul_inv_l. by rewrite Qp_mul_inv_l, Hp, Qp_mul_inv_l.
Qed. Qed.
Lemma Qp_inv_1 : /1 = 1. Lemma Qp_inv_1 : /1 = 1.
Proof. compute_done. Qed. Proof. done. Qed.
Lemma Qp_inv_half_half : /2 + /2 = 1. Lemma Qp_inv_half_half : /2 + /2 = 1.
Proof. compute_done. Qed. Proof. done. Qed.
Lemma Qp_inv_quarter_quarter : /4 + /4 = /2. Lemma Qp_inv_quarter_quarter : /4 + /4 = /2.
Proof. compute_done. Qed. Proof. done. Qed.
Lemma Qp_div_diag p : p / p = 1. Lemma Qp_div_diag p : p / p = 1.
Proof. apply Qp_mul_inv_r. Qed. Proof. apply Qp_mul_inv_r. Qed.
...@@ -931,13 +1051,13 @@ Qed. ...@@ -931,13 +1051,13 @@ Qed.
Lemma Qp_div_2_mul p q : p / (2 * q) + p / (2 * q) = p / q. Lemma Qp_div_2_mul p q : p / (2 * q) + p / (2 * q) = p / q.
Proof. by rewrite <-Qp_div_add_distr, Qp_add_diag, Qp_div_mul_cancel_l. Qed. Proof. by rewrite <-Qp_div_add_distr, Qp_add_diag, Qp_div_mul_cancel_l. Qed.
Lemma Qp_half_half : 1 / 2 + 1 / 2 = 1. Lemma Qp_half_half : 1 / 2 + 1 / 2 = 1.
Proof. compute_done. Qed. Proof. done. Qed.
Lemma Qp_quarter_quarter : 1 / 4 + 1 / 4 = 1 / 2. Lemma Qp_quarter_quarter : 1 / 4 + 1 / 4 = 1 / 2.
Proof. compute_done. Qed. Proof. done. Qed.
Lemma Qp_quarter_three_quarter : 1 / 4 + 3 / 4 = 1. Lemma Qp_quarter_three_quarter : 1 / 4 + 3 / 4 = 1.
Proof. compute_done. Qed. Proof. done. Qed.
Lemma Qp_three_quarter_quarter : 3 / 4 + 1 / 4 = 1. Lemma Qp_three_quarter_quarter : 3 / 4 + 1 / 4 = 1.
Proof. compute_done. Qed. Proof. done. Qed.
Global Instance Qp_div_inj_r p : Inj (=) (=) (Qp_div p). Global Instance Qp_div_inj_r p : Inj (=) (=) (Qp_div p).
Proof. unfold Qp_div; apply _. Qed. Proof. unfold Qp_div; apply _. Qed.
Global Instance Qp_div_inj_l p : Inj (=) (=) (λ q, q / p)%Qp. Global Instance Qp_div_inj_l p : Inj (=) (=) (λ q, q / p)%Qp.
...@@ -989,7 +1109,7 @@ Proof. ...@@ -989,7 +1109,7 @@ Proof.
Qed. Qed.
Lemma Qp_add_le_mono_l p q r : p q r + p r + q. Lemma Qp_add_le_mono_l p q r : p q r + p r + q.
Proof. rewrite !Qp_to_Qc_inj_le. destruct p, q, r; apply Qcplus_le_mono_l. Qed. Proof. by rewrite !Qp_to_Qc_inj_le, !Qp_to_Qc_inj_add, <-Qcplus_le_mono_l. Qed.
Lemma Qp_add_le_mono_r p q r : p q p + r q + r. Lemma Qp_add_le_mono_r p q r : p q p + r q + r.
Proof. rewrite !(comm_L Qp_add _ r). apply Qp_add_le_mono_l. Qed. Proof. rewrite !(comm_L Qp_add _ r). apply Qp_add_le_mono_l. Qed.
Lemma Qp_add_le_mono q p n m : q n p m q + p n + m. Lemma Qp_add_le_mono q p n m : q n p m q + p n + m.
...@@ -1004,7 +1124,8 @@ Proof. intros. etrans; [by apply Qp_add_lt_mono_l|by apply Qp_add_lt_mono_r]. Qe ...@@ -1004,7 +1124,8 @@ Proof. intros. etrans; [by apply Qp_add_lt_mono_l|by apply Qp_add_lt_mono_r]. Qe
Lemma Qp_mul_le_mono_l p q r : p q r * p r * q. Lemma Qp_mul_le_mono_l p q r : p q r * p r * q.
Proof. Proof.
rewrite !Qp_to_Qc_inj_le. destruct p, q, r; by apply Qcmult_le_mono_pos_l. assert (0 < Qp_to_Qc r)%Qc by apply Qp_to_Qc_pos.
by rewrite !Qp_to_Qc_inj_le, !Qp_to_Qc_inj_mul, <-Qcmult_le_mono_pos_l.
Qed. Qed.
Lemma Qp_mul_le_mono_r p q r : p q p * r q * r. Lemma Qp_mul_le_mono_r p q r : p q p * r q * r.
Proof. rewrite !(comm_L Qp_mul _ r). apply Qp_mul_le_mono_l. Qed. Proof. rewrite !(comm_L Qp_mul _ r). apply Qp_mul_le_mono_l. Qed.
...@@ -1013,7 +1134,8 @@ Proof. intros. etrans; [by apply Qp_mul_le_mono_l|by apply Qp_mul_le_mono_r]. Qe ...@@ -1013,7 +1134,8 @@ Proof. intros. etrans; [by apply Qp_mul_le_mono_l|by apply Qp_mul_le_mono_r]. Qe
Lemma Qp_mul_lt_mono_l p q r : p < q r * p < r * q. Lemma Qp_mul_lt_mono_l p q r : p < q r * p < r * q.
Proof. Proof.
rewrite !Qp_to_Qc_inj_lt. destruct p, q, r; by apply Qcmult_lt_mono_pos_l. assert (0 < Qp_to_Qc r)%Qc by apply Qp_to_Qc_pos.
by rewrite !Qp_to_Qc_inj_lt, !Qp_to_Qc_inj_mul, <-Qcmult_lt_mono_pos_l.
Qed. Qed.
Lemma Qp_mul_lt_mono_r p q r : p < q p * r < q * r. Lemma Qp_mul_lt_mono_r p q r : p < q p * r < q * r.
Proof. rewrite !(comm_L Qp_mul _ r). apply Qp_mul_lt_mono_l. Qed. Proof. rewrite !(comm_L Qp_mul _ r). apply Qp_mul_lt_mono_l. Qed.
...@@ -1022,8 +1144,9 @@ Proof. intros. etrans; [by apply Qp_mul_lt_mono_l|by apply Qp_mul_lt_mono_r]. Qe ...@@ -1022,8 +1144,9 @@ Proof. intros. etrans; [by apply Qp_mul_lt_mono_l|by apply Qp_mul_lt_mono_r]. Qe
Lemma Qp_lt_add_l p q : p < p + q. Lemma Qp_lt_add_l p q : p < p + q.
Proof. Proof.
destruct p as [p ?], q as [q ?]. apply Qp_to_Qc_inj_lt; simpl. rewrite !Qp_to_Qc_inj_lt, !Qp_to_Qc_inj_add.
rewrite <- (Qcplus_0_r p) at 1. by rewrite <-Qcplus_lt_mono_l. rewrite <- (Qcplus_0_r (Qp_to_Qc p)) at 1. rewrite <-Qcplus_lt_mono_l.
by apply Qp_to_Qc_pos.
Qed. Qed.
Lemma Qp_lt_add_r p q : q < p + q. Lemma Qp_lt_add_r p q : q < p + q.
Proof. rewrite (comm_L Qp_add). apply Qp_lt_add_l. Qed. Proof. rewrite (comm_L Qp_add). apply Qp_lt_add_l. Qed.
...@@ -1043,24 +1166,23 @@ Proof. apply Qp_lt_le_incl, Qp_lt_add_r. Qed. ...@@ -1043,24 +1166,23 @@ Proof. apply Qp_lt_le_incl, Qp_lt_add_r. Qed.
Lemma Qp_sub_Some p q r : p - q = Some r p = q + r. Lemma Qp_sub_Some p q r : p - q = Some r p = q + r.
Proof. Proof.
destruct p as [p Hp], q as [q Hq], r as [r Hr]. rewrite <-Qp_to_Qc_inj_iff, Qp_to_Qc_inj_add.
unfold Qp_sub, Qp_add; simpl; rewrite <-Qp_to_Qc_inj_iff; simpl. split. pose proof (Qp_to_Qc_inj_sub p q) as Hsub.
- intros; simplify_option_eq. unfold Qcminus. destruct (p - q) as [r'|]; simplify_option_eq.
by rewrite (Qcplus_comm p), Qcplus_assoc, Qcplus_opp_r, Qcplus_0_l. - split.
- intros ->. unfold Qcminus. + intros [= ->]. rewrite Hsub. ring.
rewrite <-Qcplus_assoc, (Qcplus_comm r), Qcplus_assoc. + intros Hp. f_equal. rewrite <-Qp_to_Qc_inj_iff, Hsub, Hp. ring.
rewrite Qcplus_opp_r, Qcplus_0_l. simplify_option_eq; [|done]. - split; [done|]. intros Hp. select (¬ _) (fun H => destruct H).
f_equal. by apply Qp_to_Qc_inj_iff. rewrite Hp. rewrite <- (Qcplus_0_r (Qp_to_Qc q)) at 1.
rewrite <-Qcplus_lt_mono_l. by apply Qp_to_Qc_pos.
Qed. Qed.
Lemma Qp_lt_sum p q : p < q r, q = p + r. Lemma Qp_lt_sum p q : p < q r, q = p + r.
Proof. Proof.
destruct p as [p Hp], q as [q Hq]. rewrite Qp_to_Qc_inj_lt; simpl. split; [|intros [r ->]; apply Qp_lt_add_l]. intros Hpq.
split. pose proof (Qp_to_Qc_inj_sub q p) as Hsub.
- intros Hlt%Qclt_minus_iff. exists (mk_Qp (q - p) Hlt). rewrite option_guard_True in Hsub by (by apply Qp_to_Qc_inj_lt).
apply Qp_to_Qc_inj_iff; simpl. unfold Qcminus. apply fmap_Some in Hsub as [r [? Hr]]. exists r.
by rewrite (Qcplus_comm q), Qcplus_assoc, Qcplus_opp_r, Qcplus_0_l. rewrite <-Qp_to_Qc_inj_iff, Qp_to_Qc_inj_add, <-Hr. ring.
- intros [[r ?] ?%Qp_to_Qc_inj_iff]; simplify_eq/=.
rewrite <-(Qcplus_0_r p) at 1. by apply Qcplus_lt_mono_l.
Qed. Qed.
Lemma Qp_sub_None p q : p - q = None p q. Lemma Qp_sub_None p q : p - q = None p q.
...@@ -1232,19 +1354,25 @@ Lemma Qp_min_r_iff q p : q `min` p = p ↔ p ≤ q. ...@@ -1232,19 +1354,25 @@ Lemma Qp_min_r_iff q p : q `min` p = p ↔ p ≤ q.
Proof. rewrite (comm_L Qp_min q). apply Qp_min_l_iff. Qed. Proof. rewrite (comm_L Qp_min q). apply Qp_min_l_iff. Qed.
Lemma pos_to_Qp_1 : pos_to_Qp 1 = 1. Lemma pos_to_Qp_1 : pos_to_Qp 1 = 1.
Proof. compute_done. Qed. Proof. done. Qed.
Lemma pos_to_Qp_inj n m : pos_to_Qp n = pos_to_Qp m n = m. Lemma pos_to_Qp_inj n m : pos_to_Qp n = pos_to_Qp m n = m.
Proof. by injection 1. Qed. Proof. rewrite <-Qp_to_Qc_inj_iff, !Qp_to_Qc_pos_to_Qp. by injection 1. Qed.
Lemma pos_to_Qp_inj_iff n m : pos_to_Qp n = pos_to_Qp m n = m. Lemma pos_to_Qp_inj_iff n m : pos_to_Qp n = pos_to_Qp m n = m.
Proof. split; [apply pos_to_Qp_inj|by intros ->]. Qed. Proof. split; [apply pos_to_Qp_inj|by intros ->]. Qed.
Lemma pos_to_Qp_inj_le n m : (n m)%positive pos_to_Qp n pos_to_Qp m. Lemma pos_to_Qp_inj_le n m : (n m)%positive pos_to_Qp n pos_to_Qp m.
Proof. rewrite Qp_to_Qc_inj_le; simpl. by rewrite <-Z2Qc_inj_le. Qed. Proof. by rewrite Qp_to_Qc_inj_le, !Qp_to_Qc_pos_to_Qp, <-Z2Qc_inj_le. Qed.
Lemma pos_to_Qp_inj_lt n m : (n < m)%positive pos_to_Qp n < pos_to_Qp m. Lemma pos_to_Qp_inj_lt n m : (n < m)%positive pos_to_Qp n < pos_to_Qp m.
Proof. by rewrite Pos.lt_nle, Qp_lt_nge, <-pos_to_Qp_inj_le. Qed. Proof. by rewrite Pos.lt_nle, Qp_lt_nge, <-pos_to_Qp_inj_le. Qed.
Lemma pos_to_Qp_add x y : pos_to_Qp x + pos_to_Qp y = pos_to_Qp (x + y). Lemma pos_to_Qp_add x y : pos_to_Qp x + pos_to_Qp y = pos_to_Qp (x + y).
Proof. apply Qp_to_Qc_inj_iff; simpl. by rewrite Pos2Z.inj_add, Z2Qc_inj_add. Qed. Proof.
rewrite <-Qp_to_Qc_inj_iff, Qp_to_Qc_inj_add, !Qp_to_Qc_pos_to_Qp.
by rewrite Pos2Z.inj_add, Z2Qc_inj_add.
Qed.
Lemma pos_to_Qp_mul x y : pos_to_Qp x * pos_to_Qp y = pos_to_Qp (x * y). Lemma pos_to_Qp_mul x y : pos_to_Qp x * pos_to_Qp y = pos_to_Qp (x * y).
Proof. apply Qp_to_Qc_inj_iff; simpl. by rewrite Pos2Z.inj_mul, Z2Qc_inj_mul. Qed. Proof.
rewrite <-Qp_to_Qc_inj_iff, Qp_to_Qc_inj_mul, !Qp_to_Qc_pos_to_Qp.
by rewrite Pos2Z.inj_mul, Z2Qc_inj_mul.
Qed.
Local Close Scope Qp_scope. Local Close Scope Qp_scope.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment