Skip to content
Snippets Groups Projects
Commit 3baf30f9 authored by Ralf Jung's avatar Ralf Jung
Browse files

add filter_dom_L

parent 6476dec0
No related branches found
No related tags found
No related merge requests found
......@@ -291,6 +291,10 @@ Section leibniz.
( i, i X x, m !! i = Some x P (i, x))
dom (filter P m) = X.
Proof. unfold_leibniz. apply dom_filter. Qed.
Lemma filter_dom_L {A} `{!Elements K D, !FinSet K D}
(P : K Prop) `{!∀ x, Decision (P x)} (m : M A) :
filter P (dom m) = dom (filter (λ kv, P kv.1) m).
Proof. unfold_leibniz. apply filter_dom. Qed.
Lemma dom_empty_L {A} : dom (@empty (M A) _) = ∅.
Proof. unfold_leibniz; apply dom_empty. Qed.
Lemma dom_empty_iff_L {A} (m : M A) : dom m = m = ∅.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment