Skip to content
Snippets Groups Projects
Commit 0ac2b4db authored by Ralf Jung's avatar Ralf Jung
Browse files

relate Forall2 and Forall

parent aae110fd
No related branches found
No related tags found
No related merge requests found
......@@ -2301,6 +2301,7 @@ Qed.
Lemma Forall_Forall2 {A} (Q : A A Prop) l :
Forall (λ x, Q x x) l Forall2 Q l l.
Proof. induction 1; constructor; auto. Qed.
Lemma Forall2_forall `{Inhabited A} B C (Q : A B C Prop) l k :
Forall2 (λ x y, z, Q z x y) l k z, Forall2 (Q z) l k.
Proof.
......@@ -2310,6 +2311,10 @@ Proof.
- apply IH. intros z. by feed inversion (Hlk z).
Qed.
Lemma Forall2_Forall {A} P (l1 l2 : list A) :
Forall2 P l1 l2 Forall (curry P) (zip l1 l2).
Proof. induction 1; constructor; auto. Qed.
Section Forall2.
Context {A B} (P : A B Prop).
Implicit Types x : A.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment