Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Adam
Iris
Commits
f486b227
Commit
f486b227
authored
9 months ago
by
Adam
Browse files
Options
Downloads
Patches
Plain Diff
Infinite products
parent
ca231b75
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
iris/algebra/category/morphism.v
+84
-0
84 additions, 0 deletions
iris/algebra/category/morphism.v
with
84 additions
and
0 deletions
iris/algebra/category/morphism.v
+
84
−
0
View file @
f486b227
...
...
@@ -291,6 +291,90 @@ Proof. apply fpairM_umpN. Qed.
Lemma
fpairUM_ump
{
A
B
C
}
(
f
:
A
-
ur
>
prodUR
B
C
)
(
g
:
A
-
ur
>
B
)
(
h
:
A
-
ur
>
C
)
:
f
≡
fpairUM
g
h
↔
fstUM
○
f
≡
g
∧
sndUM
○
f
≡
h
.
Proof
.
apply
fpairM_ump
.
Qed
.
(*Infinite Product*)
Definition
flam
{
I
}
{
A
}
{
B
:
I
→
ucmra
}
(
f
:
∀
i
,
A
→
B
i
)
(
a
:
A
)
:
discrete_funUR
B
:=
λ
i
,
f
i
a
.
Global
Instance
flam_morph
{
I
}
{
A
:
cmra
}
{
B
:
I
→
ucmra
}
(
f
:
∀
i
,
A
→
B
i
)
:
(
∀
i
,
Morphism
(
f
i
))
→
Morphism
(
flam
f
)
.
Proof
.
split
.
-
solve_proper
.
-
intros
n
a
?
i
.
by
apply
(
morph_validN
(
f
i
))
.
-
intros
a1
a2
i
.
apply
(
morph_op
(
f
i
))
.
Qed
.
Global
Instance
flam_umorph
{
I
}
{
A
:
ucmra
}
{
B
:
I
→
ucmra
}
(
f
:
∀
i
,
A
→
B
i
)
:
(
∀
i
,
PerservesUnit
(
f
i
))
→
PerservesUnit
(
flam
f
)
.
Proof
.
intros
?
i
.
apply
morph_unit
.
Qed
.
Canonical
flamM
{
I
}
{
A
:
cmra
}
{
B
:
I
→
ucmra
}
(
f
:
∀
i
,
A
-
r
>
B
i
)
:=
Morph
(
flam
f
)
.
Canonical
flamUM
{
I
}
{
A
:
ucmra
}
{
B
:
I
→
ucmra
}
(
f
:
∀
i
,
A
-
ur
>
B
i
)
:=
UMorph
(
flam
f
)
.
Global
Instance
flamM_ne
{
I
}
{
A
:
cmra
}
{
B
:
I
→
ucmra
}
:
∀
n
,
Proper
(
forall_relation
(
λ
_,
dist
n
)
==>
dist
n
)
(
@
flamM
I
A
B
)
.
Proof
.
intros
n
f
g
Hfg
m
a
??
i
.
by
apply
Hfg
.
Qed
.
Global
Instance
flamM_proper
{
I
}
{
A
:
cmra
}
{
B
:
I
→
ucmra
}
:
Proper
(
forall_relation
(
λ
_,
(
≡
))
==>
(
≡
))
(
@
flamM
I
A
B
)
.
Proof
.
intros
f
g
Hfg
n
a
?
i
.
by
apply
Hfg
.
Qed
.
Global
Instance
flamUM_ne
{
I
}
{
A
:
ucmra
}
{
B
:
I
→
ucmra
}
:
∀
n
,
Proper
(
forall_relation
(
λ
_,
dist
n
)
==>
dist
n
)
(
@
flamUM
I
A
B
)
.
Proof
.
exact
flamM_ne
.
Qed
.
Global
Instance
flamUM_proper
{
I
}
{
A
:
ucmra
}
{
B
:
I
→
ucmra
}
:
Proper
(
forall_relation
(
λ
_,
(
≡
))
==>
(
≡
))
(
@
flamUM
I
A
B
)
.
Proof
.
exact
flamM_proper
.
Qed
.
Definition
fproj
{
I
}
{
B
:
I
→
ucmra
}
(
i
:
I
)
(
f
:
discrete_funUR
B
)
:
B
i
:=
f
i
.
Global
Instance
fproj_morph
{
I
}
{
B
:
I
→
ucmra
}
(
i
:
I
)
:
Morphism
(
@
fproj
I
B
i
)
.
Proof
.
split
.
-
intros
n
f
g
Hfg
.
apply
Hfg
.
-
intros
n
f
Hf
.
apply
Hf
.
-
by
intros
f
g
.
Qed
.
Global
Instance
fproj_umorph
{
I
}
{
B
:
I
→
ucmra
}
(
i
:
I
)
:
PerservesUnit
(
@
fproj
I
B
i
)
.
Proof
.
by
red
.
Qed
.
Canonical
fprojM
{
I
}
{
B
:
I
→
ucmra
}
(
i
:
I
)
:=
Morph
(
@
fproj
I
B
i
)
.
Canonical
fprojUM
{
I
}
{
B
:
I
→
ucmra
}
(
i
:
I
)
:=
UMorph
(
@
fproj
I
B
i
)
.
Lemma
fprojM_flamM
{
I
A
}
{
B
:
I
→
ucmra
}
(
i
:
I
)
(
f
:
∀
i
,
A
-
r
>
B
i
)
:
fprojM
i
®
flamM
f
≡
f
i
.
Proof
.
by
intros
n
a
.
Qed
.
Lemma
flamM_eta
{
I
A
}
{
B
:
I
→
ucmra
}
(
f
:
A
-
r
>
discrete_funUR
B
)
:
f
≡
flamM
(
λ
i
,
fprojM
i
®
f
)
.
Proof
.
by
intros
n
a
.
Qed
.
Lemma
flamM_umpN
{
I
A
}
{
B
:
I
→
ucmra
}
n
(
f
:
A
-
r
>
discrete_funUR
B
)
(
g
:
∀
i
,
A
-
r
>
B
i
)
:
f
≡
{
n
}
≡
flamM
g
↔
∀
i
,
fprojM
i
®
f
≡
{
n
}
≡
g
i
.
Proof
.
split
.
-
intros
Hfg
i
.
by
rewrite
Hfg
fprojM_flamM
.
-
intros
Hfg
.
rewrite
(
flamM_eta
f
)
.
by
f_equiv
.
Qed
.
Lemma
flamM_ump
{
I
A
}
{
B
:
I
→
ucmra
}
(
f
:
A
-
r
>
discrete_funUR
B
)
(
g
:
∀
i
,
A
-
r
>
B
i
)
:
f
≡
flamM
g
↔
∀
i
,
fprojM
i
®
f
≡
g
i
.
Proof
.
split
.
-
intros
Hfg
i
.
by
rewrite
Hfg
fprojM_flamM
.
-
intros
Hfg
.
rewrite
(
flamM_eta
f
)
.
by
f_equiv
.
Qed
.
Lemma
fprojUM_flamUM
{
I
A
}
{
B
:
I
→
ucmra
}
(
i
:
I
)
(
f
:
∀
i
,
A
-
ur
>
B
i
)
:
fprojUM
i
○
flamUM
f
≡
f
i
.
Proof
.
exact
:
fprojM_flamM
.
Qed
.
Lemma
flamUM_eta
{
I
A
}
{
B
:
I
→
ucmra
}
(
f
:
A
-
ur
>
discrete_funUR
B
)
:
f
≡
flamUM
(
λ
i
,
fprojUM
i
○
f
)
.
Proof
.
exact
:
flamM_eta
.
Qed
.
Lemma
flamUM_umpN
{
I
A
}
{
B
:
I
→
ucmra
}
n
(
f
:
A
-
ur
>
discrete_funUR
B
)
(
g
:
∀
i
,
A
-
ur
>
B
i
)
:
f
≡
{
n
}
≡
flamUM
g
↔
∀
i
,
fprojUM
i
○
f
≡
{
n
}
≡
g
i
.
Proof
.
exact
:
flamM_umpN
.
Qed
.
Lemma
flamUM_ump
{
I
A
}
{
B
:
I
→
ucmra
}
(
f
:
A
-
ur
>
discrete_funUR
B
)
(
g
:
∀
i
,
A
-
ur
>
B
i
)
:
f
≡
flamUM
g
↔
∀
i
,
fprojUM
i
○
f
≡
g
i
.
Proof
.
exact
:
flamM_ump
.
Qed
.
(** option *)
Global
Instance
Some_morph
{
A
:
cmra
}
:
Morphism
(
@
Some
A
)
.
Proof
.
split
=>
//.
apply
_
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment