Skip to content
Snippets Groups Projects
Commit 9e8c1030 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

New lemma `later_own γ a : ▷ own γ a -∗ ◇ (∃ b, own γ b ∧ ▷ (a ≡ b))`.

This lemma is similar to `later_ownM`.
parent 6010b7c4
No related branches found
No related tags found
No related merge requests found
...@@ -110,6 +110,36 @@ Proof. rewrite !own_eq /own_def; apply _. Qed. ...@@ -110,6 +110,36 @@ Proof. rewrite !own_eq /own_def; apply _. Qed.
Global Instance own_core_persistent γ a : CoreId a Persistent (own γ a). Global Instance own_core_persistent γ a : CoreId a Persistent (own γ a).
Proof. rewrite !own_eq /own_def; apply _. Qed. Proof. rewrite !own_eq /own_def; apply _. Qed.
Lemma later_own γ a : own γ a -∗ ( b, own γ b (a b)).
Proof.
rewrite own_eq /own_def later_ownM. apply exist_elim=> r.
assert (NonExpansive (λ r : iResUR Σ, r (inG_id H) !! γ)).
{ intros n r1 r2 Hr. f_equiv. by specialize (Hr (inG_id _)). }
rewrite (f_equiv (λ r : iResUR Σ, r (inG_id H) !! γ) _ r).
rewrite {1}/iRes_singleton ofe_fun_lookup_singleton lookup_singleton.
rewrite option_equivI. case Hb: (r (inG_id _) !! γ)=> [b|]; last first.
{ by rewrite and_elim_r /sbi_except_0 -or_intro_l. }
rewrite -except_0_intro -(exist_intro (cmra_transport (eq_sym inG_prf) b)).
apply and_mono.
- rewrite /iRes_singleton. assert ( {A A' : cmraT} (Heq : A' = A) (a : A),
cmra_transport Heq (cmra_transport (eq_sym Heq) a) = a) as ->
by (by intros ?? ->).
apply ownM_mono=> /=.
exists (ofe_fun_insert (inG_id _) (delete γ (r (inG_id H))) r).
intros i'. rewrite ofe_fun_lookup_op.
destruct (decide (i' = inG_id _)) as [->|?].
+ rewrite ofe_fun_lookup_insert ofe_fun_lookup_singleton.
intros γ'. rewrite lookup_op. destruct (decide (γ' = γ)) as [->|?].
* by rewrite lookup_singleton lookup_delete Hb.
* by rewrite lookup_singleton_ne // lookup_delete_ne // left_id.
+ rewrite ofe_fun_lookup_insert_ne //.
by rewrite ofe_fun_lookup_singleton_ne // left_id.
- apply later_mono.
by assert ( {A A' : cmraT} (Heq : A' = A) (a' : A') (a : A),
cmra_transport Heq a' a ⊢@{iPropI Σ}
a' cmra_transport (eq_sym Heq) a) as -> by (by intros ?? ->).
Qed.
(** ** Allocation *) (** ** Allocation *)
(* TODO: This also holds if we just have ✓ a at the current step-idx, as Iris (* TODO: This also holds if we just have ✓ a at the current step-idx, as Iris
assertion. However, the map_updateP_alloc does not suffice to show this. *) assertion. However, the map_updateP_alloc does not suffice to show this. *)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment