Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Abel Nieto
Iris
Commits
96882993
Commit
96882993
authored
5 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
add dependent allocation lemma to own
parent
62798412
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
theories/algebra/gmap.v
+24
-10
24 additions, 10 deletions
theories/algebra/gmap.v
theories/base_logic/lib/own.v
+29
-11
29 additions, 11 deletions
theories/base_logic/lib/own.v
with
53 additions
and
21 deletions
theories/algebra/gmap.v
+
24
−
10
View file @
96882993
...
...
@@ -353,9 +353,10 @@ Qed.
Section
freshness
.
Local
Set
Default
Proof
Using
"Type*"
.
Context
`{
!
Infinite
K
}
.
Lemma
alloc_updateP_strong
(
Q
:
gmap
K
A
→
Prop
)
(
I
:
K
→
Prop
)
m
x
:
Lemma
alloc_updateP_strong
_dep
(
Q
:
gmap
K
A
→
Prop
)
(
I
:
K
→
Prop
)
m
(
f
:
K
→
A
)
:
pred_infinite
I
→
✓
x
→
(
∀
i
,
m
!!
i
=
None
→
I
i
→
Q
(
<
[
i
:=
x
]
>
m
))
→
m
~~>:
Q
.
(
∀
i
,
✓
(
f
i
))
→
(
∀
i
,
m
!!
i
=
None
→
I
i
→
Q
(
<
[
i
:=
f
i
]
>
m
))
→
m
~~>:
Q
.
Proof
.
move
=>
/
(
pred_infinite_set
I
(
C
:=
gset
K
))
HP
?
HQ
.
apply
cmra_total_updateP
.
intros
n
mf
Hm
.
...
...
@@ -363,13 +364,19 @@ Section freshness.
assert
(
m
!!
i
=
None
)
.
{
eapply
(
not_elem_of_dom
(
D
:=
gset
K
))
.
revert
Hi2
.
rewrite
dom_op
not_elem_of_union
.
naive_solver
.
}
exists
(
<
[
i
:=
x
]
>
m
);
split
.
exists
(
<
[
i
:=
f
i
]
>
m
);
split
.
-
by
apply
HQ
.
-
rewrite
insert_singleton_op
//.
rewrite
-
assoc
-
insert_singleton_op
;
last
by
eapply
(
not_elem_of_dom
(
D
:=
gset
K
))
.
by
apply
insert_validN
;
[
apply
cmra_valid_validN
|]
.
Qed
.
Lemma
alloc_updateP_strong
(
Q
:
gmap
K
A
→
Prop
)
(
I
:
K
→
Prop
)
m
x
:
pred_infinite
I
→
✓
x
→
(
∀
i
,
m
!!
i
=
None
→
I
i
→
Q
(
<
[
i
:=
x
]
>
m
))
→
m
~~>:
Q
.
Proof
.
move
=>
HP
?
HQ
.
eapply
alloc_updateP_strong_dep
with
(
f
:=
λ
_,
x
);
eauto
.
Qed
.
Lemma
alloc_updateP
(
Q
:
gmap
K
A
→
Prop
)
m
x
:
✓
x
→
(
∀
i
,
m
!!
i
=
None
→
Q
(
<
[
i
:=
x
]
>
m
))
→
m
~~>:
Q
.
Proof
.
...
...
@@ -377,13 +384,6 @@ Section freshness.
eapply
alloc_updateP_strong
with
(
I
:=
λ
_,
True
);
eauto
using
pred_infinite_True
.
Qed
.
Lemma
alloc_updateP_strong'
m
x
(
I
:
K
→
Prop
)
:
pred_infinite
I
→
✓
x
→
m
~~>:
λ
m'
,
∃
i
,
I
i
∧
m'
=
<
[
i
:=
x
]
>
m
∧
m
!!
i
=
None
.
Proof
.
eauto
using
alloc_updateP_strong
.
Qed
.
Lemma
alloc_updateP'
m
x
:
✓
x
→
m
~~>:
λ
m'
,
∃
i
,
m'
=
<
[
i
:=
x
]
>
m
∧
m
!!
i
=
None
.
Proof
.
eauto
using
alloc_updateP
.
Qed
.
Lemma
alloc_updateP_cofinite
(
Q
:
gmap
K
A
→
Prop
)
(
J
:
gset
K
)
m
x
:
✓
x
→
(
∀
i
,
m
!!
i
=
None
→
i
∉
J
→
Q
(
<
[
i
:=
x
]
>
m
))
→
m
~~>:
Q
.
Proof
.
...
...
@@ -392,6 +392,20 @@ Section freshness.
intros
E
.
exists
(
fresh
(
J
∪
E
))
.
apply
not_elem_of_union
,
is_fresh
.
Qed
.
(* Variants without the universally quantified Q, for use in case that is an evar. *)
Lemma
alloc_updateP_strong_dep'
m
(
f
:
K
→
A
)
(
I
:
K
→
Prop
)
:
pred_infinite
I
→
(
∀
i
,
✓
(
f
i
))
→
m
~~>:
λ
m'
,
∃
i
,
I
i
∧
m'
=
<
[
i
:=
f
i
]
>
m
∧
m
!!
i
=
None
.
Proof
.
eauto
using
alloc_updateP_strong_dep
.
Qed
.
Lemma
alloc_updateP_strong'
m
x
(
I
:
K
→
Prop
)
:
pred_infinite
I
→
✓
x
→
m
~~>:
λ
m'
,
∃
i
,
I
i
∧
m'
=
<
[
i
:=
x
]
>
m
∧
m
!!
i
=
None
.
Proof
.
eauto
using
alloc_updateP_strong
.
Qed
.
Lemma
alloc_updateP'
m
x
:
✓
x
→
m
~~>:
λ
m'
,
∃
i
,
m'
=
<
[
i
:=
x
]
>
m
∧
m
!!
i
=
None
.
Proof
.
eauto
using
alloc_updateP
.
Qed
.
Lemma
alloc_updateP_cofinite'
m
x
(
J
:
gset
K
)
:
✓
x
→
m
~~>:
λ
m'
,
∃
i
,
i
∉
J
∧
m'
=
<
[
i
:=
x
]
>
m
∧
m
!!
i
=
None
.
Proof
.
eauto
using
alloc_updateP_cofinite
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
theories/base_logic/lib/own.v
+
29
−
11
View file @
96882993
...
...
@@ -146,33 +146,51 @@ Qed.
(** ** Allocation *)
(* TODO: This also holds if we just have ✓ a at the current step-idx, as Iris
assertion. However, the map_updateP_alloc does not suffice to show this. *)
Lemma
own_alloc_strong
a
(
P
:
gname
→
Prop
)
:
Lemma
own_alloc_strong
_dep
(
f
:
gname
→
A
)
(
P
:
gname
→
Prop
)
:
pred_infinite
P
→
✓
a
→
(|
==>
∃
γ
,
⌜
P
γ
⌝
∧
own
γ
a
)
%
I
.
(
forall
γ
,
✓
(
f
γ
))
→
(|
==>
∃
γ
,
⌜
P
γ
⌝
∧
own
γ
(
f
γ
))
%
I
.
Proof
.
intros
HP
Ha
.
rewrite
-
(
bupd_mono
(
∃
m
,
⌜∃
γ
,
P
γ
∧
m
=
iRes_singleton
γ
a
⌝
∧
uPred_ownM
m
)
%
I
)
.
rewrite
-
(
bupd_mono
(
∃
m
,
⌜∃
γ
,
P
γ
∧
m
=
iRes_singleton
γ
(
f
γ
)
⌝
∧
uPred_ownM
m
)
%
I
)
.
-
rewrite
/
uPred_valid
/
bi_emp_valid
(
ownM_unit
emp
)
.
eapply
bupd_ownM_updateP
,
(
discrete_fun_singleton_updateP_empty
(
inG_id
Hin
));
first
(
eapply
alloc_updateP_strong'
,
cmra_transport_valid
,
Ha
);
naive_solver
.
eapply
bupd_ownM_updateP
,
(
discrete_fun_singleton_updateP_empty
(
inG_id
Hin
))
.
+
eapply
alloc_updateP_strong_dep'
;
first
done
.
intros
i
.
eapply
cmra_transport_valid
,
Ha
.
+
naive_solver
.
-
apply
exist_elim
=>
m
;
apply
pure_elim_l
=>
-
[
γ
[
Hfresh
->
]]
.
by
rewrite
!
own_eq
/
own_def
-
(
exist_intro
γ
)
pure_True
//
left_id
.
Qed
.
Lemma
own_alloc_cofinite
a
(
G
:
gset
gname
)
:
✓
a
→
(|
==>
∃
γ
,
⌜
γ
∉
G
⌝
∧
own
γ
a
)
%
I
.
Lemma
own_alloc_strong
a
(
P
:
gname
→
Prop
)
:
pred_infinite
P
→
✓
a
→
(|
==>
∃
γ
,
⌜
P
γ
⌝
∧
own
γ
a
)
%
I
.
Proof
.
intros
HP
Ha
.
eapply
own_alloc_strong_dep
with
(
f
:=
λ
_,
a
);
eauto
.
Qed
.
Lemma
own_alloc_cofinite_dep
(
f
:
gname
→
A
)
(
G
:
gset
gname
)
:
(
forall
γ
,
✓
(
f
γ
))
→
(|
==>
∃
γ
,
⌜
γ
∉
G
⌝
∧
own
γ
(
f
γ
))
%
I
.
Proof
.
intros
Ha
.
apply
(
own_alloc_strong
a
(
λ
γ
,
γ
∉
G
))=>
//.
apply
(
own_alloc_strong
_dep
f
(
λ
γ
,
γ
∉
G
))=>
//.
apply
(
pred_infinite_set
(
C
:=
gset
gname
))
.
intros
E
.
set
(
i
:=
fresh
(
G
∪
E
))
.
exists
i
.
apply
not_elem_of_union
,
is_fresh
.
Qed
.
Lemma
own_alloc
a
:
✓
a
→
(|
==>
∃
γ
,
own
γ
a
)
%
I
.
Lemma
own_alloc_cofinite
a
(
G
:
gset
gname
)
:
✓
a
→
(|
==>
∃
γ
,
⌜
γ
∉
G
⌝
∧
own
γ
a
)
%
I
.
Proof
.
intros
Ha
.
eapply
own_alloc_cofinite_dep
with
(
f
:=
λ
_,
a
);
eauto
.
Qed
.
Lemma
own_alloc_dep
(
f
:
gname
→
A
)
:
(
forall
γ
,
✓
(
f
γ
))
→
(|
==>
∃
γ
,
own
γ
(
f
γ
))
%
I
.
Proof
.
intros
Ha
.
rewrite
/
uPred_valid
/
bi_emp_valid
(
own_alloc_cofinite
a
∅
)
//
;
[]
.
intros
Ha
.
rewrite
/
uPred_valid
/
bi_emp_valid
(
own_alloc_cofinite
_dep
f
∅
)
//
;
[]
.
apply
bupd_mono
,
exist_mono
=>?
.
eauto
using
and_elim_r
.
Qed
.
Lemma
own_alloc
a
:
✓
a
→
(|
==>
∃
γ
,
own
γ
a
)
%
I
.
Proof
.
intros
Ha
.
eapply
own_alloc_dep
with
(
f
:=
λ
_,
a
);
eauto
.
Qed
.
(** ** Frame preserving updates *)
Lemma
own_updateP
P
γ
a
:
a
~~>:
P
→
own
γ
a
==∗
∃
a'
,
⌜
P
a'
⌝
∧
own
γ
a'
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment