Forked from
Iris / Iris
3485 commits behind the upstream repository.
lifting.v 6.19 KiB
From iris.program_logic Require Export weakestpre.
From iris.proofmode Require Import tactics.
Set Default Proof Using "Type".
Section lifting.
Context `{!irisG Λ Σ}.
Implicit Types s : stuckness.
Implicit Types v : val Λ.
Implicit Types e : expr Λ.
Implicit Types σ : state Λ.
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val Λ → iProp Σ.
Hint Resolve reducible_no_obs_reducible : core.
Lemma wp_lift_step_fupd s E Φ e1 :
to_val e1 = None →
(∀ σ1 κ κs n, state_interp σ1 (κ ++ κs) n ={E,∅}=∗
⌜if s is NotStuck then reducible e1 σ1 else True⌝ ∗
∀ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌝ ={∅,∅,E}▷=∗
state_interp σ2 κs (length efs + n) ∗
WP e2 @ s; E {{ Φ }} ∗
[∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ fork_post }})
⊢ WP e1 @ s; E {{ Φ }}.
Proof.
rewrite wp_unfold /wp_pre=>->. iIntros "H" (σ1 κ κs n) "Hσ".
iMod ("H" with "Hσ") as "(%&H)". iModIntro. iSplit. by destruct s.
iIntros (????). iApply "H". eauto.
Qed.
Lemma wp_lift_stuck E Φ e :
to_val e = None →
(∀ σ κs n, state_interp σ κs n ={E,∅}=∗ ⌜stuck e σ⌝)
⊢ WP e @ E ?{{ Φ }}.
Proof.
rewrite wp_unfold /wp_pre=>->. iIntros "H" (σ1 κ κs n) "Hσ".
iMod ("H" with "Hσ") as %[? Hirr]. iModIntro. iSplit; first done.
iIntros (e2 σ2 efs ?). by case: (Hirr κ e2 σ2 efs).
Qed.
(** Derived lifting lemmas. *)
Lemma wp_lift_step s E Φ e1 :
to_val e1 = None →
(∀ σ1 κ κs n, state_interp σ1 (κ ++ κs) n ={E,∅}=∗
⌜if s is NotStuck then reducible e1 σ1 else True⌝ ∗
▷ ∀ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌝ ={∅,E}=∗
state_interp σ2 κs (length efs + n) ∗
WP e2 @ s; E {{ Φ }} ∗
[∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ fork_post }})
⊢ WP e1 @ s; E {{ Φ }}.
Proof.
iIntros (?) "H". iApply wp_lift_step_fupd; [done|]. iIntros (????) "Hσ".
iMod ("H" with "Hσ") as "[$ H]". iIntros "!> * % !> !>". by iApply "H".
Qed.
Lemma wp_lift_pure_step_no_fork `{!Inhabited (state Λ)} s E E' Φ e1 :
(∀ σ1, if s is NotStuck then reducible e1 σ1 else to_val e1 = None) →
(∀ κ σ1 e2 σ2 efs, prim_step e1 σ1 κ e2 σ2 efs → κ = [] ∧ σ2 = σ1 ∧ efs = []) →
(|={E,E'}▷=> ∀ κ e2 efs σ, ⌜prim_step e1 σ κ e2 σ efs⌝ → WP e2 @ s; E {{ Φ }})
⊢ WP e1 @ s; E {{ Φ }}.
Proof.
iIntros (Hsafe Hstep) "H". iApply wp_lift_step.
{ specialize (Hsafe inhabitant). destruct s; eauto using reducible_not_val. }
iIntros (σ1 κ κs n) "Hσ". iMod "H".
iMod fupd_intro_mask' as "Hclose"; last iModIntro; first by set_solver. iSplit.
{ iPureIntro. destruct s; done. }
iNext. iIntros (e2 σ2 efs ?).
destruct (Hstep κ σ1 e2 σ2 efs) as (-> & <- & ->); auto.
iMod "Hclose" as "_". iMod "H". iModIntro.
iDestruct ("H" with "[//]") as "H". simpl. iFrame.
Qed.
Lemma wp_lift_pure_stuck `{!Inhabited (state Λ)} E Φ e :
(∀ σ, stuck e σ) →
True ⊢ WP e @ E ?{{ Φ }}.
Proof.
iIntros (Hstuck) "_". iApply wp_lift_stuck.
- destruct(to_val e) as [v|] eqn:He; last done.
rewrite -He. by case: (Hstuck inhabitant).
- iIntros (σ κs n) "_". by iMod (fupd_intro_mask' E ∅) as "_"; first set_solver.
Qed.
(* Atomic steps don't need any mask-changing business here, one can
use the generic lemmas here. *)
Lemma wp_lift_atomic_step_fupd {s E1 E2 Φ} e1 :
to_val e1 = None →
(∀ σ1 κ κs n, state_interp σ1 (κ ++ κs) n ={E1}=∗
⌜if s is NotStuck then reducible e1 σ1 else True⌝ ∗
∀ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌝ ={E1,E2}▷=∗
state_interp σ2 κs (length efs + n) ∗
from_option Φ False (to_val e2) ∗
[∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ fork_post }})
⊢ WP e1 @ s; E1 {{ Φ }}.
Proof.
iIntros (?) "H".
iApply (wp_lift_step_fupd s E1 _ e1)=>//; iIntros (σ1 κ κs n) "Hσ1".
iMod ("H" $! σ1 with "Hσ1") as "[$ H]".
iMod (fupd_intro_mask' E1 ∅) as "Hclose"; first set_solver.
iIntros "!>" (e2 σ2 efs ?). iMod "Hclose" as "_".
iMod ("H" $! e2 σ2 efs with "[#]") as "H"; [done|].
iMod (fupd_intro_mask' E2 ∅) as "Hclose"; [set_solver|]. iIntros "!> !>".
iMod "Hclose" as "_". iMod "H" as "($ & HQ & $)".
destruct (to_val e2) eqn:?; last by iExFalso.
iApply wp_value; last done. by apply of_to_val.
Qed.
Lemma wp_lift_atomic_step {s E Φ} e1 :
to_val e1 = None →
(∀ σ1 κ κs n, state_interp σ1 (κ ++ κs) n ={E}=∗
⌜if s is NotStuck then reducible e1 σ1 else True⌝ ∗
▷ ∀ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌝ ={E}=∗
state_interp σ2 κs (length efs + n) ∗
from_option Φ False (to_val e2) ∗
[∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ fork_post }})
⊢ WP e1 @ s; E {{ Φ }}.
Proof.
iIntros (?) "H". iApply wp_lift_atomic_step_fupd; [done|].
iIntros (????) "?". iMod ("H" with "[$]") as "[$ H]".
iIntros "!> *". iIntros (Hstep) "!> !>".
by iApply "H".
Qed.
Lemma wp_lift_pure_det_step_no_fork `{!Inhabited (state Λ)} {s E E' Φ} e1 e2 :
(∀ σ1, if s is NotStuck then reducible e1 σ1 else to_val e1 = None) →
(∀ σ1 κ e2' σ2 efs', prim_step e1 σ1 κ e2' σ2 efs' →
κ = [] ∧ σ2 = σ1 ∧ e2' = e2 ∧ efs' = []) →
(|={E,E'}▷=> WP e2 @ s; E {{ Φ }}) ⊢ WP e1 @ s; E {{ Φ }}.
Proof.
iIntros (? Hpuredet) "H". iApply (wp_lift_pure_step_no_fork s E E'); try done.
{ naive_solver. }
iApply (step_fupd_wand with "H"); iIntros "H".
iIntros (κ e' efs' σ (_&?&->&?)%Hpuredet); auto.
Qed.
Lemma wp_pure_step_fupd `{!Inhabited (state Λ)} s E E' e1 e2 φ n Φ :
PureExec φ n e1 e2 →
φ →
(|={E,E'}▷=>^n WP e2 @ s; E {{ Φ }}) ⊢ WP e1 @ s; E {{ Φ }}.
Proof.
iIntros (Hexec Hφ) "Hwp". specialize (Hexec Hφ).
iInduction Hexec as [e|n e1 e2 e3 [Hsafe ?]] "IH"; simpl; first done.
iApply wp_lift_pure_det_step_no_fork.
- intros σ. specialize (Hsafe σ). destruct s; eauto using reducible_not_val.
- done.
- by iApply (step_fupd_wand with "Hwp").
Qed.
Lemma wp_pure_step_later `{!Inhabited (state Λ)} s E e1 e2 φ n Φ :
PureExec φ n e1 e2 →
φ →
▷^n WP e2 @ s; E {{ Φ }} ⊢ WP e1 @ s; E {{ Φ }}.
Proof.
intros Hexec ?. rewrite -wp_pure_step_fupd //. clear Hexec.
induction n as [|n IH]; by rewrite //= -step_fupd_intro // IH.
Qed.
End lifting.