Skip to content
Snippets Groups Projects
  1. Sep 21, 2017
  2. Sep 20, 2017
  3. Sep 18, 2017
  4. Sep 17, 2017
  5. Aug 28, 2017
    • Robbert Krebbers's avatar
      More consistent naming for fixpoints. · b60e126a
      Robbert Krebbers authored
      - Use Φ and Ψ for predicates.
      - Use _1 and _2 suffixes for the different directions of a lemma.
      - Not all lemmas started with _uPred; we do not let the bigop lemmas (for instance)
        start with uPred_ either, so I just got rid of the prefix.
      b60e126a
  6. Aug 24, 2017
  7. Aug 23, 2017
  8. Aug 22, 2017
  9. Aug 20, 2017
  10. Aug 17, 2017
  11. Aug 07, 2017
  12. Aug 06, 2017
  13. Jun 27, 2017
  14. Jun 13, 2017
  15. Jun 12, 2017
  16. Jun 08, 2017
  17. May 12, 2017
  18. Apr 13, 2017
  19. Apr 11, 2017
  20. Apr 07, 2017
  21. Apr 05, 2017
  22. Apr 04, 2017
  23. Mar 27, 2017
  24. Mar 24, 2017
    • Robbert Krebbers's avatar
      Make big_opL type class opaque. · 02a0929d
      Robbert Krebbers authored
      This commit fixes the issues that refolding of big operators did not work nicely
      in the proof mode, e.g., given:
      
          Goal forall M (P : nat → uPred M) l,
            ([∗ list] x ∈ 10 :: l, P x) -∗ True.
          Proof. iIntros (M P l) "[H1 H2]".
      
      We got:
      
          "H1" : P 10
          "H2" : (fix
                  big_opL (M0 : ofeT) (o : M0 → M0 → M0) (H : Monoid o) (A : Type)
                          (f : nat → A → M0) (xs : list A) {struct xs} : M0 :=
                    match xs with
                    | [] => monoid_unit
                    | x :: xs0 => o (f 0 x) (big_opL M0 o H A (λ n : nat, f (S n)) xs0)
                    end) (uPredC M) uPred_sep uPred.uPred_sep_monoid nat
                   (λ _ x : nat, P x) l
          --------------------------------------∗
          True
      
      The problem here is that proof mode looked for an instance of `IntoAnd` for
      `[∗ list] x ∈ 10 :: l, P x` and then applies the instance for separating conjunction
      without folding back the fixpoint. This problem is not specific to the Iris proof
      mode, but more of a general problem of Coq's `apply`, for example:
      
          Goal forall x l, Forall (fun _ => True) (map S (x :: l)).
          Proof.
            intros x l. constructor.
      
      Gives:
      
           Forall (λ _ : nat, True)
             ((fix map (l0 : list nat) : list nat :=
                match l0 with
                | [] => []
                | a :: t => S a :: map t
                end) l)
      
      This commit fixes this issue by making the big operators type class opaque and instead
      handle them solely via corresponding type classes instances for the proof mode tactics.
      
      Furthermore, note that we already had instances for persistence and timelessness. Those
      were really needed; computation did not help to establish persistence when the list in
      question was not a ground term. In fact, the sitation was worse, to establish persistence
      of `[∗ list] x ∈ 10 :: l, P x` it could either use the persistence instance of big ops
      directly, or use the persistency instance for `∗` first. Worst case, this can lead to an
      exponential blow up because of back tracking.
      02a0929d
    • Robbert Krebbers's avatar
    • Robbert Krebbers's avatar
      Generic big operators that are no longer tied to CMRAs. · 6fbff46e
      Robbert Krebbers authored
      Instead, I have introduced a type class `Monoid` that is used by the big operators:
      
          Class Monoid {M : ofeT} (o : M → M → M) := {
            monoid_unit : M;
            monoid_ne : NonExpansive2 o;
            monoid_assoc : Assoc (≡) o;
            monoid_comm : Comm (≡) o;
            monoid_left_id : LeftId (≡) monoid_unit o;
            monoid_right_id : RightId (≡) monoid_unit o;
          }.
      
      Note that the operation is an argument because we want to have multiple monoids over
      the same type (for example, on `uPred`s we have monoids for `∗`, `∧`, and `∨`). However,
      we do bundle the unit because:
      
      - If we would not, the unit would appear explicitly in an implicit argument of the
        big operators, which confuses rewrite. By bundling the unit in the `Monoid` class
        it is hidden, and hence rewrite won't even see it.
      - The unit is unique.
      
      We could in principle have big ops over setoids instead of OFEs. However, since we do
      not have a canonical structure for bundled setoids, I did not go that way.
      6fbff46e
Loading