- Nov 22, 2017
-
-
Robbert Krebbers authored
It used to be an inline pattern match. This also restores compatibility with Coq 8.6.1.
-
Robbert Krebbers authored
-
- Nov 14, 2017
-
-
Robbert Krebbers authored
-
- Nov 13, 2017
-
-
Robbert Krebbers authored
-
Robbert Krebbers authored
-
Robbert Krebbers authored
The proof mode now explicitly keeps track of anonymous hypotheses (i.e. hypotheses that are introduced by the introduction pattern `?`). Consider: Lemma foo {M} (P Q R : uPred M) : P -∗ (Q ∗ R) -∗ Q ∗ P. Proof. iIntros "? [H ?]". iFrame "H". iFrame. Qed. After the `iIntros`, the goal will be: _ : P "H" : Q _ : R --------------------------------------∗ Q ∗ P Anonymous hypotheses are displayed in a special way (`_ : P`). An important property of the new anonymous hypotheses is that it is no longer possible to refer to them by name, whereas before, anonymous hypotheses were given some arbitrary fresh name (typically prefixed by `~`). Note tactics can still operate on these anonymous hypotheses. For example, both `iFrame` and `iAssumption`, as well as the symbolic execution tactics, will use them. The only thing that is not possible is to refer to them yourself, for example, in an introduction, specialization or selection pattern. Advantages of the new approach: - Proofs become more robust as one cannot accidentally refer to anonymous hypotheses by their fresh name. - Fresh name generation becomes considerably easier. Since anonymous hypotheses are internally represented by natural numbers (of type `N`), we can just fold over the hypotheses and take the max plus one. This thus solve issue #101.
-
Robbert Krebbers authored
-
Robbert Krebbers authored
-
- Nov 11, 2017
-
-
Robbert Krebbers authored
-
- Nov 06, 2017
-
-
Robbert Krebbers authored
-
- Nov 03, 2017
-
-
Robbert Krebbers authored
-
- Nov 01, 2017
-
-
Robbert Krebbers authored
This solves issue #100: the proof mode notation is sometimes not printed. As Ralf discovered, the problem is that there are two overlapping notations: ```coq Notation "P ⊢ Q" := (uPred_entails P Q). ``` And the "proof mode" notation: ``` Notation "Γ '--------------------------------------' □ Δ '--------------------------------------' ∗ Q" := (of_envs (Envs Γ Δ) ⊢ Q%I). ``` These two notations overlap, so, when having a "proof mode" goal of the shape `of_envs (Envs Γ Δ) ⊢ Q%I`, how do we know which notation is Coq going to pick for pretty printing this goal? As we have seen, this choice depends on the import order (since both notations appear in different files), and as such, Coq sometimes (unintendedly) uses the first notation instead of the latter. The idea of this commit is to wrap `of_envs (Envs Γ Δ) ⊢ Q%I` into a definition so that there is no ambiguity for the pretty printer anymore.
-
- Oct 28, 2017
-
-
Robbert Krebbers authored
-
Robbert Krebbers authored
This way, it can be used with `iApply`.
-
Robbert Krebbers authored
-
Robbert Krebbers authored
-
- Oct 27, 2017
-
-
Robbert Krebbers authored
-
Robbert Krebbers authored
This closes issue #64.
-
- Oct 26, 2017
-
-
Robbert Krebbers authored
-
Robbert Krebbers authored
-
Robbert Krebbers authored
-
Robbert Krebbers authored
-
- Oct 25, 2017
-
-
Robbert Krebbers authored
Replace/remove some occurences of `persistently` into `persistent` where the property instead of the modality is used.
-
Robbert Krebbers authored
-
Robbert Krebbers authored
-
Robbert Krebbers authored
-
Robbert Krebbers authored
Rename `UCMRA` → `Ucmra` Rename `CMRA` → `Cmra` Rename `OFE` → `Ofe` (`Ofe` was already used partially, but many occurences were missing) Rename `STS` → `Sts` Rename `DRA` → `Dra`
-
Robbert Krebbers authored
-
Robbert Krebbers authored
-
Robbert Krebbers authored
I have reimplemented the tactic for introduction of ∀s/pures using type classes, which directly made it much more modular.
-
Robbert Krebbers authored
The advantage is that we can directly use a Coq introduction pattern `cpat` to perform actions to the pure assertion. Before, this had to be done in several steps: iDestruct ... as "[Htmp ...]"; iDestruct "Htmp" as %cpat. That is, one had to introduce a temporary name. I expect this to be quite useful in various developments as many of e.g. our invariants are written as: ∃ x1 .. x2, ⌜ pure stuff ⌝ ∗ spacial stuff.
-
- Oct 10, 2017
-
-
Robbert Krebbers authored
-
- Oct 05, 2017
-
-
Robbert Krebbers authored
-
- Sep 28, 2017
-
-
Robbert Krebbers authored
-
- Sep 27, 2017
-
-
Robbert Krebbers authored
-
Robbert Krebbers authored
This causes a bit of backwards incompatibility: it may now succeed with later stripping below unlocked/TC transparent definitions. This problem actually occured for `wsat`.
-
- Sep 26, 2017
-
-
Robbert Krebbers authored
-
Robbert Krebbers authored
We used to normalize the goal, and then checked whether it was of a certain shape. Since `uPred_valid P` normalized to `True ⊢ P`, there was no way of making a distinction between the two, hence `True ⊢ P` was treated as `uPred_valid P`. In this commit, I use type classes to check whether the goal is of a certain shape. Since we declared `uPred_valid` as `Typeclasses Opaque`, we can now make a distinction between `True ⊢ P` and `uPred_valid P`.
-
- Sep 21, 2017
-
-
Robbert Krebbers authored
-
- Sep 06, 2017
-
-
Robbert Krebbers authored
-