Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Abhishek Anand
Iris
Commits
f123ff1e
Commit
f123ff1e
authored
6 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
make emp_wand a LeftId instance, like True_impl
parent
bf5df6e8
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
theories/bi/derived_laws_bi.v
+13
-12
13 additions, 12 deletions
theories/bi/derived_laws_bi.v
theories/bi/plainly.v
+4
-4
4 additions, 4 deletions
theories/bi/plainly.v
theories/bi/updates.v
+21
-20
21 additions, 20 deletions
theories/bi/updates.v
with
38 additions
and
36 deletions
theories/bi/derived_laws_bi.v
+
13
−
12
View file @
f123ff1e
...
...
@@ -373,12 +373,13 @@ Proof.
apply
sep_mono_r
,
wand_elim_r
.
Qed
.
Lemma
emp_wand
P
:
(
emp
-∗
P
)
⊣⊢
P
.
Global
Instance
emp_wand
:
LeftId
(
⊣⊢
)
emp
%
I
(
@
bi_wand
PROP
)
.
Proof
.
apply
(
anti_symm
_)
.
intros
P
.
apply
(
anti_symm
_)
.
-
by
rewrite
-
[(
emp
-∗
P
)
%
I
]
left_id
wand_elim_r
.
-
apply
wand_intro_l
.
by
rewrite
left_id
.
Qed
.
Lemma
False_wand
P
:
(
False
-∗
P
)
⊣⊢
True
.
Proof
.
apply
(
anti_symm
(
⊢
));
[
by
auto
|]
.
...
...
@@ -426,7 +427,7 @@ Lemma wand_iff_refl P : emp ⊢ P ∗-∗ P.
Proof
.
apply
and_intro
;
apply
wand_intro_l
;
by
rewrite
right_id
.
Qed
.
Lemma
wand_entails
P
Q
:
(
P
-∗
Q
)
%
I
→
P
⊢
Q
.
Proof
.
intros
.
rewrite
-
[
P
]
left_id
.
by
apply
wand_elim_l'
.
Qed
.
Proof
.
intros
.
rewrite
-
[
P
]
emp_sep
.
by
apply
wand_elim_l'
.
Qed
.
Lemma
entails_wand
P
Q
:
(
P
⊢
Q
)
→
(
P
-∗
Q
)
%
I
.
Proof
.
intros
->
.
apply
wand_intro_r
.
by
rewrite
left_id
.
Qed
.
...
...
@@ -531,7 +532,7 @@ Lemma pure_wand_forall φ P `{!Absorbing P} : (⌜φ⌝ -∗ P) ⊣⊢ (∀ _ :
Proof
.
apply
(
anti_symm
_)
.
-
apply
forall_intro
=>
Hφ
.
by
rewrite
-
(
left_id
emp
%
I
_
(_
-∗
_)
%
I
)
(
pure_intro
φ
emp
%
I
)
//
wand_elim_r
.
rewrite
-
(
pure_intro
φ
emp
%
I
)
//
emp_wand
//
.
-
apply
wand_intro_l
,
wand_elim_l'
,
pure_elim'
=>
Hφ
.
apply
wand_intro_l
.
rewrite
(
forall_elim
Hφ
)
comm
.
by
apply
absorbing
.
Qed
.
...
...
@@ -667,8 +668,8 @@ Lemma True_affine_all_affine P : Affine (PROP:=PROP) True → Affine P.
Proof
.
rewrite
/
Affine
=>
<-
;
auto
.
Qed
.
Lemma
emp_absorbing_all_absorbing
P
:
Absorbing
(
PROP
:=
PROP
)
emp
→
Absorbing
P
.
Proof
.
intros
.
rewrite
/
Absorbing
-
{
2
}(
left_id
emp
%
I
_
P
)
.
by
rewrite
-
(
absorbing
emp
)
absorbingly_sep_l
left_id
.
intros
.
rewrite
/
Absorbing
-
{
2
}(
emp_sep
P
)
.
rewrite
-
(
absorbing
emp
)
absorbingly_sep_l
left_id
//
.
Qed
.
Lemma
sep_elim_l
P
Q
`{
H
:
TCOr
(
Affine
Q
)
(
Absorbing
P
)}
:
P
∗
Q
⊢
P
.
...
...
@@ -819,8 +820,8 @@ Lemma persistently_and_emp_elim P : emp ∧ <pers> P ⊢ P.
Proof
.
by
rewrite
comm
persistently_and_sep_elim_emp
right_id
and_elim_r
.
Qed
.
Lemma
persistently_into_absorbingly
P
:
<
pers
>
P
⊢
<
absorb
>
P
.
Proof
.
rewrite
-
(
right_id
True
%
I
_
(
<
pers
>
_)
%
I
)
-
{
1
}(
left_id
emp
%
I
_
True
%
I
)
.
by
rewrite
persistently_and_sep_assoc
(
comm
bi_and
)
persistently_and_emp_elim
comm
.
rewrite
-
(
right_id
True
%
I
_
(
<
pers
>
_)
%
I
)
-
{
1
}(
emp_sep
True
%
I
)
.
rewrite
persistently_and_sep_assoc
(
comm
bi_and
)
persistently_and_emp_elim
comm
//
.
Qed
.
Lemma
persistently_elim
P
`{
!
Absorbing
P
}
:
<
pers
>
P
⊢
P
.
Proof
.
by
rewrite
persistently_into_absorbingly
absorbing_absorbingly
.
Qed
.
...
...
@@ -846,14 +847,14 @@ Lemma persistently_sep_dup P : <pers> P ⊣⊢ <pers> P ∗ <pers> P.
Proof
.
apply
(
anti_symm
_)
.
-
rewrite
-
{
1
}(
idemp
bi_and
(
<
pers
>
_)
%
I
)
.
by
rewrite
-
{
2
}(
left_id
emp
%
I
_
(
<
pers
>
_)
%
I
)
by
rewrite
-
{
2
}(
emp_sep
(
<
pers
>
_)
%
I
)
persistently_and_sep_assoc
and_elim_l
.
-
by
rewrite
persistently_absorbing
.
Qed
.
Lemma
persistently_and_sep_l_1
P
Q
:
<
pers
>
P
∧
Q
⊢
<
pers
>
P
∗
Q
.
Proof
.
by
rewrite
-
{
1
}(
left_id
emp
%
I
_
Q
%
I
)
persistently_and_sep_assoc
and_elim_l
.
by
rewrite
-
{
1
}(
emp_sep
Q
%
I
)
persistently_and_sep_assoc
and_elim_l
.
Qed
.
Lemma
persistently_and_sep_r_1
P
Q
:
P
∧
<
pers
>
Q
⊢
P
∗
<
pers
>
Q
.
Proof
.
by
rewrite
!
(
comm
_
P
)
persistently_and_sep_l_1
.
Qed
.
...
...
@@ -861,7 +862,7 @@ Proof. by rewrite !(comm _ P) persistently_and_sep_l_1. Qed.
Lemma
persistently_and_sep
P
Q
:
<
pers
>
(
P
∧
Q
)
⊢
<
pers
>
(
P
∗
Q
)
.
Proof
.
rewrite
persistently_and
.
rewrite
-
{
1
}
persistently_idemp
-
persistently_and
-
{
1
}(
left_id
emp
%
I
_
Q
%
I
)
.
rewrite
-
{
1
}
persistently_idemp
-
persistently_and
-
{
1
}(
emp_sep
Q
%
I
)
.
by
rewrite
persistently_and_sep_assoc
(
comm
bi_and
)
persistently_and_emp_elim
.
Qed
.
...
...
@@ -914,7 +915,7 @@ Proof. intros; rewrite -persistently_and_sep_r_1; auto. Qed.
Lemma
persistently_impl_wand_2
P
Q
:
<
pers
>
(
P
-∗
Q
)
⊢
<
pers
>
(
P
→
Q
)
.
Proof
.
apply
persistently_intro'
,
impl_intro_r
.
rewrite
-
{
2
}(
left_id
emp
%
I
_
P
%
I
)
persistently_and_sep_assoc
.
rewrite
-
{
2
}(
emp_sep
P
%
I
)
persistently_and_sep_assoc
.
by
rewrite
(
comm
bi_and
)
persistently_and_emp_elim
wand_elim_l
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
theories/bi/plainly.v
+
4
−
4
View file @
f123ff1e
...
...
@@ -192,12 +192,12 @@ Lemma plainly_sep_dup P : ■ P ⊣⊢ ■ P ∗ ■ P.
Proof
.
apply
(
anti_symm
_)
.
-
rewrite
-
{
1
}(
idemp
bi_and
(
■
_)
%
I
)
.
by
rewrite
-
{
2
}(
left_id
emp
%
I
_
(
■
_)
%
I
)
plainly_and_sep_assoc
and_elim_l
.
by
rewrite
-
{
2
}(
emp_sep
(
■
_)
%
I
)
plainly_and_sep_assoc
and_elim_l
.
-
by
rewrite
plainly_absorb
.
Qed
.
Lemma
plainly_and_sep_l_1
P
Q
:
■
P
∧
Q
⊢
■
P
∗
Q
.
Proof
.
by
rewrite
-
{
1
}(
left_id
emp
%
I
_
Q
%
I
)
plainly_and_sep_assoc
and_elim_l
.
Qed
.
Proof
.
by
rewrite
-
{
1
}(
emp_sep
Q
%
I
)
plainly_and_sep_assoc
and_elim_l
.
Qed
.
Lemma
plainly_and_sep_r_1
P
Q
:
P
∧
■
Q
⊢
P
∗
■
Q
.
Proof
.
by
rewrite
!
(
comm
_
P
)
plainly_and_sep_l_1
.
Qed
.
...
...
@@ -206,7 +206,7 @@ Proof. apply (anti_symm _); eauto using plainly_mono, plainly_emp_intro. Qed.
Lemma
plainly_and_sep
P
Q
:
■
(
P
∧
Q
)
⊢
■
(
P
∗
Q
)
.
Proof
.
rewrite
plainly_and
.
rewrite
-
{
1
}
plainly_idemp
-
plainly_and
-
{
1
}(
left_id
emp
%
I
_
Q
%
I
)
.
rewrite
-
{
1
}
plainly_idemp
-
plainly_and
-
{
1
}(
emp_sep
Q
%
I
)
.
by
rewrite
plainly_and_sep_assoc
(
comm
bi_and
)
plainly_and_emp_elim
.
Qed
.
...
...
@@ -249,7 +249,7 @@ Proof. intros; rewrite -plainly_and_sep_r_1; auto. Qed.
Lemma
plainly_impl_wand_2
P
Q
:
■
(
P
-∗
Q
)
⊢
■
(
P
→
Q
)
.
Proof
.
apply
plainly_intro'
,
impl_intro_r
.
rewrite
-
{
2
}(
left_id
emp
%
I
_
P
%
I
)
plainly_and_sep_assoc
.
rewrite
-
{
2
}(
emp_sep
P
%
I
)
plainly_and_sep_assoc
.
by
rewrite
(
comm
bi_and
)
plainly_and_emp_elim
wand_elim_l
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
theories/bi/updates.v
+
21
−
20
View file @
f123ff1e
From
stdpp
Require
Import
coPset
.
From
iris
.
bi
Require
Import
interface
derived_laws_sbi
big_op
plainly
.
Import
interface
.
bi
derived_laws_bi
.
bi
derived_laws_sbi
.
bi
.
(* We first define operational type classes for the notations, and then later
bundle these operational type classes with the laws. *)
...
...
@@ -135,9 +136,9 @@ Section bupd_derived.
Lemma
bupd_frame_l
R
Q
:
(
R
∗
|
==>
Q
)
==∗
R
∗
Q
.
Proof
.
rewrite
!
(
comm
_
R
);
apply
bupd_frame_r
.
Qed
.
Lemma
bupd_wand_l
P
Q
:
(
P
-∗
Q
)
∗
(|
==>
P
)
==∗
Q
.
Proof
.
by
rewrite
bupd_frame_l
bi
.
wand_elim_l
.
Qed
.
Proof
.
by
rewrite
bupd_frame_l
wand_elim_l
.
Qed
.
Lemma
bupd_wand_r
P
Q
:
(|
==>
P
)
∗
(
P
-∗
Q
)
==∗
Q
.
Proof
.
by
rewrite
bupd_frame_r
bi
.
wand_elim_r
.
Qed
.
Proof
.
by
rewrite
bupd_frame_r
wand_elim_r
.
Qed
.
Lemma
bupd_sep
P
Q
:
(|
==>
P
)
∗
(|
==>
Q
)
==∗
P
∗
Q
.
Proof
.
by
rewrite
bupd_frame_r
bupd_frame_l
bupd_trans
.
Qed
.
End
bupd_derived
.
...
...
@@ -148,8 +149,8 @@ Section bupd_derived_sbi.
Lemma
except_0_bupd
P
:
◇
(|
==>
P
)
⊢
(|
==>
◇
P
)
.
Proof
.
rewrite
/
sbi_except_0
.
apply
bi
.
or_elim
;
eauto
using
bupd_mono
,
bi
.
or_intro_r
.
by
rewrite
-
bupd_intro
-
bi
.
or_intro_l
.
rewrite
/
sbi_except_0
.
apply
or_elim
;
eauto
using
bupd_mono
,
or_intro_r
.
by
rewrite
-
bupd_intro
-
or_intro_l
.
Qed
.
Lemma
bupd_plain
P
`{
BiBUpdPlainly
PROP
,
!
Plain
P
}
:
(|
==>
P
)
⊢
P
.
...
...
@@ -180,14 +181,14 @@ Section fupd_derived.
Lemma
fupd_frame_l
E1
E2
P
Q
:
(
P
∗
|
=
{
E1
,
E2
}=>
Q
)
=
{
E1
,
E2
}
=∗
P
∗
Q
.
Proof
.
rewrite
!
(
comm
_
P
);
apply
fupd_frame_r
.
Qed
.
Lemma
fupd_wand_l
E1
E2
P
Q
:
(
P
-∗
Q
)
∗
(|
=
{
E1
,
E2
}=>
P
)
=
{
E1
,
E2
}
=∗
Q
.
Proof
.
by
rewrite
fupd_frame_l
bi
.
wand_elim_l
.
Qed
.
Proof
.
by
rewrite
fupd_frame_l
wand_elim_l
.
Qed
.
Lemma
fupd_wand_r
E1
E2
P
Q
:
(|
=
{
E1
,
E2
}=>
P
)
∗
(
P
-∗
Q
)
=
{
E1
,
E2
}
=∗
Q
.
Proof
.
by
rewrite
fupd_frame_r
bi
.
wand_elim_r
.
Qed
.
Proof
.
by
rewrite
fupd_frame_r
wand_elim_r
.
Qed
.
Lemma
fupd_trans_frame
E1
E2
E3
P
Q
:
((
Q
=
{
E2
,
E3
}
=∗
emp
)
∗
|
=
{
E1
,
E2
}=>
(
Q
∗
P
))
=
{
E1
,
E3
}
=∗
P
.
Proof
.
rewrite
fupd_frame_l
assoc
-
(
comm
_
Q
)
bi
.
wand_elim_r
.
rewrite
fupd_frame_l
assoc
-
(
comm
_
Q
)
wand_elim_r
.
by
rewrite
fupd_frame_r
left_id
fupd_trans
.
Qed
.
...
...
@@ -199,7 +200,7 @@ Section fupd_derived.
E1
##
Ef
→
(|
=
{
E1
,
E2
}=>
P
)
=
{
E1
∪
Ef
,
E2
∪
Ef
}
=∗
P
.
Proof
.
intros
?
.
rewrite
-
fupd_mask_frame_r'
//.
f_equiv
.
apply
bi
.
impl_intro_l
,
bi
.
and_elim_r
.
apply
impl_intro_l
,
and_elim_r
.
Qed
.
Lemma
fupd_mask_mono
E1
E2
P
:
E1
⊆
E2
→
(|
=
{
E1
}=>
P
)
=
{
E2
}
=∗
P
.
Proof
.
...
...
@@ -226,8 +227,8 @@ Section fupd_derived.
(
Q
-∗
|
=
{
E
∖
E2
,
E'
}=>
(
∀
R
,
(|
=
{
E1
∖
E2
,
E1
}=>
R
)
-∗
|
=
{
E
∖
E2
,
E
}=>
R
)
-∗
P
)
-∗
(|
=
{
E
,
E'
}=>
P
)
.
Proof
.
intros
HE
.
apply
bi
.
wand_intro_r
.
rewrite
fupd_frame_r
.
rewrite
bi
.
wand_elim_r
.
clear
Q
.
intros
HE
.
apply
wand_intro_r
.
rewrite
fupd_frame_r
.
rewrite
wand_elim_r
.
clear
Q
.
rewrite
-
(
fupd_mask_frame
E
E'
);
first
apply
fupd_mono
;
last
done
.
(* The most horrible way to apply fupd_intro_mask *)
rewrite
-
[
X
in
(
X
-∗
_)](
right_id
emp
%
I
)
.
...
...
@@ -235,9 +236,9 @@ Section fupd_derived.
{
rewrite
{
1
}(
union_difference_L
_
_
HE
)
.
set_solver
.
}
rewrite
fupd_frame_l
fupd_frame_r
.
apply
fupd_elim
.
apply
fupd_mono
.
eapply
bi
.
wand_apply
;
last
(
apply
bi
.
sep_mono
;
first
reflexivity
);
first
reflexivity
.
apply
bi
.
forall_intro
=>
R
.
apply
bi
.
wand_intro_r
.
eapply
wand_apply
;
last
(
apply
sep_mono
;
first
reflexivity
);
first
reflexivity
.
apply
forall_intro
=>
R
.
apply
wand_intro_r
.
rewrite
fupd_frame_r
.
apply
fupd_elim
.
rewrite
left_id
.
rewrite
(
fupd_mask_frame_r
_
_
(
E
∖
E1
));
last
set_solver
+.
rewrite
{
4
}(
union_difference_L
_
_
HE
)
.
done
.
...
...
@@ -271,16 +272,16 @@ Section fupd_derived.
Lemma
fupd_plain
`{
BiPlainly
PROP
,
!
BiFUpdPlainly
PROP
}
E1
E2
P
Q
`{
!
Plain
P
}
:
E1
⊆
E2
→
(
Q
-∗
P
)
-∗
(|
=
{
E1
,
E2
}=>
Q
)
=
{
E1
}
=∗
(|
=
{
E1
,
E2
}=>
Q
)
∗
P
.
Proof
.
intros
HE
.
rewrite
-
(
fupd_plain'
_
_
E1
)
//.
apply
bi
.
wand_intro_l
.
by
rewrite
bi
.
wand_elim_r
-
fupd_intro
.
intros
HE
.
rewrite
-
(
fupd_plain'
_
_
E1
)
//.
apply
wand_intro_l
.
by
rewrite
wand_elim_r
-
fupd_intro
.
Qed
.
(** Fancy updates that take a step derived rules. *)
Lemma
step_fupd_wand
E1
E2
P
Q
:
(|
=
{
E1
,
E2
}
▷=>
P
)
-∗
(
P
-∗
Q
)
-∗
|
=
{
E1
,
E2
}
▷=>
Q
.
Proof
.
apply
bi
.
wand_intro_l
.
by
rewrite
(
bi
.
later_intro
(
P
-∗
Q
)
%
I
)
fupd_frame_l
-
bi
.
later_sep
fupd_frame_l
bi
.
wand_elim_l
.
apply
wand_intro_l
.
by
rewrite
(
later_intro
(
P
-∗
Q
)
%
I
)
fupd_frame_l
-
later_sep
fupd_frame_l
wand_elim_l
.
Qed
.
Lemma
step_fupd_mask_frame_r
E1
E2
Ef
P
:
...
...
@@ -292,13 +293,13 @@ Section fupd_derived.
Lemma
step_fupd_mask_mono
E1
E2
F1
F2
P
:
F1
⊆
F2
→
E1
⊆
E2
→
(|
=
{
E1
,
F2
}
▷=>
P
)
⊢
|
=
{
E2
,
F1
}
▷=>
P
.
Proof
.
intros
??
.
rewrite
-
(
left_id
emp
%
I
_
(|
=
{
E1
,
F2
}
▷=>
P
)
%
I
)
.
intros
??
.
rewrite
-
(
emp_sep
(|
=
{
E1
,
F2
}
▷=>
P
)
%
I
)
.
rewrite
(
fupd_intro_mask
E2
E1
emp
%
I
)
//.
rewrite
fupd_frame_r
-
(
fupd_trans
E2
E1
F1
)
.
f_equiv
.
rewrite
fupd_frame_l
-
(
fupd_trans
E1
F2
F1
)
.
f_equiv
.
rewrite
(
fupd_intro_mask
F2
F1
(|
=
{_,_}=>
emp
)
%
I
)
//.
rewrite
fupd_frame_r
.
f_equiv
.
rewrite
[
X
in
(
X
∗
_)
%
I
]
bi
.
later_intro
-
bi
.
later_sep
.
f_equiv
.
rewrite
[
X
in
(
X
∗
_)
%
I
]
later_intro
-
later_sep
.
f_equiv
.
rewrite
fupd_frame_r
-
(
fupd_trans
F1
F2
E2
)
.
f_equiv
.
rewrite
fupd_frame_l
-
(
fupd_trans
F2
E1
E2
)
.
f_equiv
.
by
rewrite
fupd_frame_r
left_id
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment