Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Abhishek Anand
Iris
Commits
df0bf3ac
Commit
df0bf3ac
authored
6 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Add missing `Implicit Type` and fix an unbounded variable.
parent
6b37b21d
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/bi/big_op.v
+3
-2
3 additions, 2 deletions
theories/bi/big_op.v
with
3 additions
and
2 deletions
theories/bi/big_op.v
+
3
−
2
View file @
df0bf3ac
...
...
@@ -49,6 +49,7 @@ Notation "'[∗' 'mset]' x ∈ X , P" := (big_opMS bi_sep (λ x, P) X) : bi_scop
(** * Properties *)
Section
bi_big_op
.
Context
{
PROP
:
bi
}
.
Implicit
Types
P
Q
:
PROP
.
Implicit
Types
Ps
Qs
:
list
PROP
.
Implicit
Types
A
:
Type
.
...
...
@@ -91,7 +92,7 @@ Section sep_list.
(
big_opL
(
@
bi_sep
PROP
)
(
A
:=
A
))
.
Proof
.
intros
f
g
Hf
m
?
<-.
apply
big_opL_forall
;
apply
_
||
intros
;
apply
Hf
.
Qed
.
Global
Instance
big_sepL_id_mono'
:
Proper
(
Forall2
(
⊢
)
==>
(
⊢
))
(
big_opL
(
@
bi_sep
M
)
(
λ
_
P
,
P
))
.
Proper
(
Forall2
(
⊢
)
==>
(
⊢
))
(
big_opL
(
@
bi_sep
PROP
)
(
λ
_
P
,
P
))
.
Proof
.
by
induction
1
as
[|
P
Q
Ps
Qs
HPQ
?
IH
];
rewrite
/=
?HPQ
?IH
.
Qed
.
Lemma
big_sepL_emp
l
:
([
∗
list
]
k
↦
y
∈
l
,
emp
)
⊣⊢@
{
PROP
}
emp
.
...
...
@@ -470,7 +471,7 @@ Section and_list.
(
big_opL
(
@
bi_and
PROP
)
(
A
:=
A
))
.
Proof
.
intros
f
g
Hf
m
?
<-.
apply
big_opL_forall
;
apply
_
||
intros
;
apply
Hf
.
Qed
.
Global
Instance
big_andL_id_mono'
:
Proper
(
Forall2
(
⊢
)
==>
(
⊢
))
(
big_opL
(
@
bi_and
M
)
(
λ
_
P
,
P
))
.
Proper
(
Forall2
(
⊢
)
==>
(
⊢
))
(
big_opL
(
@
bi_and
PROP
)
(
λ
_
P
,
P
))
.
Proof
.
by
induction
1
as
[|
P
Q
Ps
Qs
HPQ
?
IH
];
rewrite
/=
?HPQ
?IH
.
Qed
.
Lemma
big_andL_lookup
Φ
l
i
x
`{
!
Absorbing
(
Φ
i
x
)}
:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment