Skip to content
Snippets Groups Projects
Commit ae3b6560 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Merge branch 'robbert/iFrame_improvements' into 'master'

Various improvements to iFrame

Closes #145

See merge request FP/iris-coq!110
parents d328e59e 19f72a60
No related branches found
No related tags found
No related merge requests found
......@@ -47,8 +47,8 @@ Section proofs.
Proof.
iIntros "#HPQ". rewrite /na_inv. iDestruct 1 as (i ?) "#Hinv".
iExists i. iSplit; first done. iApply (inv_iff with "[] Hinv").
iNext. iAlways. iSplit; (iIntros "[[? Ho]|?]";
[iLeft; iFrame "Ho"; by iApply "HPQ"|by iRight]).
iNext; iAlways.
iSplit; iIntros "[[? Ho]|$]"; iLeft; iFrame "Ho"; by iApply "HPQ".
Qed.
Lemma na_alloc : (|==> p, na_own p )%I.
......
......@@ -92,7 +92,7 @@ Section proof.
wp_load. destruct (decide (x = o)) as [->|Hneq].
- iDestruct "Ha" as "[Hainv [[Ho HR] | Haown]]".
+ iMod ("Hclose" with "[Hlo Hln Hainv Ht]") as "_".
{ iNext. iExists o, n. iFrame. eauto. }
{ iNext. iExists o, n. iFrame. }
iModIntro. wp_let. wp_op. case_bool_decide; [|done].
wp_if.
iApply ("HΦ" with "[-]"). rewrite /locked. iFrame. eauto.
......
......@@ -532,8 +532,8 @@ Proof. by rewrite /MakeSep right_id. Qed.
Global Instance make_sep_default P Q : MakeSep P Q (P Q) | 100.
Proof. done. Qed.
Global Instance frame_sep_persistent_l R P1 P2 Q1 Q2 Q' :
Frame true R P1 Q1 MaybeFrame true R P2 Q2 MakeSep Q1 Q2 Q'
Global Instance frame_sep_persistent_l progress R P1 P2 Q1 Q2 Q' :
Frame true R P1 Q1 MaybeFrame true R P2 Q2 progress MakeSep Q1 Q2 Q'
Frame true R (P1 P2) Q' | 9.
Proof.
rewrite /Frame /MaybeFrame /MakeSep /= => <- <- <-.
......@@ -565,12 +565,14 @@ Global Instance make_and_true_r P : MakeAnd P True P.
Proof. by rewrite /MakeAnd right_id. Qed.
Global Instance make_and_default P Q : MakeAnd P Q (P Q) | 100.
Proof. done. Qed.
Global Instance frame_and_l p R P1 P2 Q Q' :
Frame p R P1 Q MakeAnd Q P2 Q' Frame p R (P1 P2) Q' | 9.
Proof. rewrite /Frame /MakeAnd => <- <-; eauto 10 with I. Qed.
Global Instance frame_and_r p R P1 P2 Q Q' :
Frame p R P2 Q MakeAnd P1 Q Q' Frame p R (P1 P2) Q' | 10.
Proof. rewrite /Frame /MakeAnd => <- <-; eauto 10 with I. Qed.
Global Instance frame_and p progress1 progress2 R P1 P2 Q1 Q2 Q' :
MaybeFrame p R P1 Q1 progress1
MaybeFrame p R P2 Q2 progress2
TCEq (progress1 || progress2) true
MakeAnd Q1 Q2 Q'
Frame p R (P1 P2) Q' | 9.
Proof. rewrite /MaybeFrame /Frame /MakeAnd => <- <- _ <-; eauto 10 with I. Qed.
Class MakeOr (P Q PQ : uPred M) := make_or : P Q ⊣⊢ PQ.
Global Instance make_or_true_l P : MakeOr True P True.
......@@ -580,20 +582,33 @@ Proof. by rewrite /MakeOr right_absorb. Qed.
Global Instance make_or_default P Q : MakeOr P Q (P Q) | 100.
Proof. done. Qed.
Global Instance frame_or_persistent_l R P1 P2 Q1 Q2 Q :
Frame true R P1 Q1 MaybeFrame true R P2 Q2 MakeOr Q1 Q2 Q
Frame true R (P1 P2) Q | 9.
Proof. rewrite /Frame /MakeOr => <- <- <-. by rewrite -sep_or_l. Qed.
Global Instance frame_or_persistent_r R P1 P2 Q1 Q2 Q :
MaybeFrame true R P2 Q2 MakeOr P1 Q2 Q
Frame true R (P1 P2) Q | 10.
Proof.
rewrite /Frame /MaybeFrame /MakeOr => <- <-. by rewrite sep_or_l sep_elim_r.
Qed.
Global Instance frame_or R P1 P2 Q1 Q2 Q :
Frame false R P1 Q1 Frame false R P2 Q2 MakeOr Q1 Q2 Q
Frame false R (P1 P2) Q.
Proof. rewrite /Frame /MakeOr => <- <- <-. by rewrite -sep_or_l. Qed.
(* We could in principle write the instance [frame_or_spatial] by a bunch of
instances, i.e. (omitting the parameter [p = false]):
Frame R P1 Q1 → Frame R P2 Q2 → Frame R (P1 ∨ P2) (Q1 ∨ Q2)
Frame R P1 True → Frame R (P1 ∨ P2) P2
Frame R P2 True → Frame R (P1 ∨ P2) P1
The problem here is that Coq will try to infer [Frame R P1 ?] and [Frame R P2 ?]
multiple times, whereas the current solution makes sure that said inference
appears at most once.
If Coq would memorize the results of type class resolution, the solution with
multiple instances would be preferred (and more Prolog-like). *)
Global Instance frame_or_spatial progress1 progress2 R P1 P2 Q1 Q2 Q :
MaybeFrame false R P1 Q1 progress1 MaybeFrame false R P2 Q2 progress2
TCOr (TCEq (progress1 && progress2) true) (TCOr
(TCAnd (TCEq progress1 true) (TCEq Q1 True%I))
(TCAnd (TCEq progress2 true) (TCEq Q2 True%I)))
MakeOr Q1 Q2 Q
Frame false R (P1 P2) Q | 9.
Proof. rewrite /Frame /MakeOr => <- <- _ <-. by rewrite -sep_or_l. Qed.
Global Instance frame_or_persistent progress1 progress2 R P1 P2 Q1 Q2 Q :
MaybeFrame true R P1 Q1 progress1 MaybeFrame true R P2 Q2 progress2
TCEq (progress1 || progress2) true
MakeOr Q1 Q2 Q Frame true R (P1 P2) Q | 9.
Proof. rewrite /Frame /MakeOr => <- <- _ <-. by rewrite -sep_or_l. Qed.
Global Instance frame_wand p R P1 P2 Q2 :
Frame p R P2 Q2 Frame p R (P1 -∗ P2) (P1 -∗ Q2).
......@@ -602,6 +617,20 @@ Proof.
by rewrite assoc (comm _ P1) -assoc wand_elim_r.
Qed.
Global Instance frame_impl_persistent R P1 P2 Q2 :
Frame true R P2 Q2 Frame true R (P1 P2) (P1 Q2).
Proof.
rewrite /Frame /==> ?. apply impl_intro_l.
by rewrite -and_sep_l assoc (comm _ P1) -assoc impl_elim_r and_sep_l.
Qed.
Global Instance frame_impl R P1 P2 Q2 :
Persistent P1
Frame false R P2 Q2 Frame false R (P1 P2) (P1 Q2).
Proof.
rewrite /Frame /==> ??. apply impl_intro_l.
by rewrite and_sep_l assoc (comm _ P1) -assoc -(and_sep_l P1) impl_elim_r.
Qed.
Class MakeLater (P lP : uPred M) := make_later : P ⊣⊢ lP.
Global Instance make_later_true : MakeLater True True.
Proof. by rewrite /MakeLater later_True. Qed.
......
......@@ -190,14 +190,19 @@ Class Frame {M} (p : bool) (R P Q : uPred M) := frame : □?p R ∗ Q ⊢ P.
Arguments frame {_ _} _ _ _ {_}.
Hint Mode Frame + + ! ! - : typeclass_instances.
Class MaybeFrame {M} (p : bool) (R P Q : uPred M) := maybe_frame : ?p R Q P.
(* The boolean [progress] indicates whether actual framing has been performed.
If it is [false], then the default instance [maybe_frame_default] below has been
used. *)
Class MaybeFrame {M} (p : bool) (R P Q : uPred M) (progress : bool) :=
maybe_frame : ?p R Q P.
Arguments maybe_frame {_} _ _ _ {_}.
Hint Mode MaybeFrame + + ! ! - : typeclass_instances.
Hint Mode MaybeFrame + + ! ! - - : typeclass_instances.
Instance maybe_frame_frame {M} p (R P Q : uPred M) :
Frame p R P Q MaybeFrame p R P Q.
Frame p R P Q MaybeFrame p R P Q true.
Proof. done. Qed.
Instance maybe_frame_default {M} p (R P : uPred M) : MaybeFrame p R P P | 100.
Instance maybe_frame_default {M} p (R P : uPred M) :
MaybeFrame p R P P false | 100.
Proof. apply sep_elim_r. Qed.
Class FromOr {M} (P Q1 Q2 : uPred M) := from_or : Q1 Q2 P.
......
......@@ -102,7 +102,20 @@ Proof. iIntros "[H [? _]]". by iFrame. Qed.
Lemma test_iFrame_pure (x y z : M) :
x y z -∗ ( x x y z : uPred M).
Proof. iIntros (Hv) "Hxy". by iFrame (Hv Hv) "Hxy". Qed.
Proof. iIntros (Hv) "Hxy". iFrame (Hv) "Hxy". Qed.
Lemma test_iFrame_disjunction_1 P1 P2 Q1 Q2 :
P1 -∗ Q2 -∗ P2 -∗ (P1 P2 False P2) (Q1 Q2).
Proof. iIntros "#HP1 HQ2 HP2". iFrame "HP1 HQ2 HP2". Qed.
Lemma test_iFrame_disjunction_2 P : P -∗ (True True) P.
Proof. iIntros "HP". iFrame "HP". auto. Qed.
Lemma test_iFrame_conjunction_1 P Q :
P -∗ Q -∗ (P Q) (P Q).
Proof. iIntros "HP HQ". iFrame "HP HQ". Qed.
Lemma test_iFrame_conjunction_2 P Q :
P -∗ Q -∗ (P P) (Q Q).
Proof. iIntros "HP HQ". iFrame "HP HQ". Qed.
Lemma test_iAssert_persistent P Q : P -∗ Q -∗ True.
Proof.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment