@@ -89,6 +89,8 @@ For once, every \emph{contractive function} $f : \ofe \to \cofeB$ where $\cofeB$
...
@@ -89,6 +89,8 @@ For once, every \emph{contractive function} $f : \ofe \to \cofeB$ where $\cofeB$
This also holds if $f^k$ is contractive for an arbitrary $k$.
This also holds if $f^k$ is contractive for an arbitrary $k$.
Furthermore, by America and Rutten's theorem~\cite{America-Rutten:JCSS89,birkedal:metric-space}, every contractive (bi)functor from $\COFEs$ to $\COFEs$ has a unique\footnote{Uniqueness is not proven in Coq.} fixed-point.
Furthermore, by America and Rutten's theorem~\cite{America-Rutten:JCSS89,birkedal:metric-space}, every contractive (bi)functor from $\COFEs$ to $\COFEs$ has a unique\footnote{Uniqueness is not proven in Coq.} fixed-point.
$\SProp$ as defined above is complete, \ie it is a COFE.
\subsection{RA}
\subsection{RA}
...
@@ -208,7 +210,7 @@ This operation is needed to prove that $\later$ commutes with separating conjunc
...
@@ -208,7 +210,7 @@ This operation is needed to prove that $\later$ commutes with separating conjunc
\begin{defn}
\begin{defn}
It is possible to do a \emph{frame-preserving update} from $\melt\in\monoid$ to $\meltsB\subseteq\monoid$, written $\melt\mupd\meltsB$, if
It is possible to do a \emph{frame-preserving update} from $\melt\in\monoid$ to $\meltsB\subseteq\monoid$, written $\melt\mupd\meltsB$, if
\[\All n, \maybe{\melt_\f}. \melt\mtimesn \in\mval(\maybe{\melt_\f})\Ra\Exists\meltB\in\meltsB. \meltB\mtimesn \in\mval(\maybe{\melt_\f})\]
\[\All n, \maybe{\melt_\f}. n \in\mval(\melt\mtimes\maybe{\melt_\f})\Ra\Exists\meltB\in\meltsB. n \in\mval(\meltB\mtimes\maybe{\melt_\f})\]
We further define $\melt\mupd\meltB\eqdef\melt\mupd\set\meltB$.
We further define $\melt\mupd\meltB\eqdef\melt\mupd\set\meltB$.