Skip to content
Snippets Groups Projects
Commit a51a6e3e authored by Ralf Jung's avatar Ralf Jung
Browse files

Merge branch 'ralf/saved_prop' into 'master'

generalize savedProp to let the user control the position of the type-level later

See merge request FP/iris-coq!76
parents 34dd98a7 9465608a
No related branches found
No related tags found
No related merge requests found
......@@ -620,9 +620,9 @@ Definition ccompose {A B C}
(f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
Lemma ccompose_ne {A B C} (f1 f2 : B -n> C) (g1 g2 : A -n> B) n :
f1 {n} f2 g1 {n} g2 f1 g1 {n} f2 g2.
Proof. by intros Hf Hg x; rewrite /= (Hg x) (Hf (g2 x)). Qed.
Global Instance ccompose_ne {A B C} :
NonExpansive2 (@ccompose A B C).
Proof. intros n ?? Hf g1 g2 Hg x. rewrite /= (Hg x) (Hf (g2 x)) //. Qed.
(* Function space maps *)
Definition ofe_mor_map {A A' B B'} (f : A' -n> A) (g : B -n> B')
......
From iris.base_logic Require Export own.
From iris.algebra Require Import agree.
From stdpp Require Import gmap.
From iris.proofmode Require Import tactics.
Set Default Proof Using "Type".
Import uPred.
Class savedPropG (Σ : gFunctors) (F : cFunctor) :=
saved_prop_inG :> inG Σ (agreeR (laterC (F (iPreProp Σ)))).
Definition savedPropΣ (F : cFunctor) : gFunctors :=
#[ GFunctor (agreeRF ( F)) ].
(* "Saved anything" -- this can give you saved propositions, saved predicates,
saved whatever-you-like. *)
Instance subG_savedPropΣ {Σ F} : subG (savedPropΣ F) Σ savedPropG Σ F.
Class savedAnythingG (Σ : gFunctors) (F : cFunctor) :=
saved_anything_inG :> inG Σ (agreeR (F (iPreProp Σ))).
Definition savedAnythingΣ (F : cFunctor) `{!cFunctorContractive F} : gFunctors :=
#[ GFunctor (agreeRF F) ].
Instance subG_savedAnythingΣ {Σ F} `{!cFunctorContractive F} :
subG (savedAnythingΣ F) Σ savedAnythingG Σ F.
Proof. solve_inG. Qed.
Definition saved_prop_own `{savedPropG Σ F}
Definition saved_anything_own `{savedAnythingG Σ F}
(γ : gname) (x : F (iProp Σ)) : iProp Σ :=
own γ (to_agree $ Next (cFunctor_map F (iProp_fold, iProp_unfold) x)).
Typeclasses Opaque saved_prop_own.
Instance: Params (@saved_prop_own) 3.
own γ (to_agree $ (cFunctor_map F (iProp_fold, iProp_unfold) x)).
Typeclasses Opaque saved_anything_own.
Instance: Params (@saved_anything_own) 3.
Section saved_prop.
Context `{savedPropG Σ F}.
Section saved_anything.
Context `{savedAnythingG Σ F}.
Implicit Types x y : F (iProp Σ).
Implicit Types γ : gname.
Global Instance saved_prop_persistent γ x : Persistent (saved_prop_own γ x).
Proof. rewrite /saved_prop_own; apply _. Qed.
Global Instance saved_anything_persistent γ x :
Persistent (saved_anything_own γ x).
Proof. rewrite /saved_anything_own; apply _. Qed.
Global Instance saved_anything_ne γ : NonExpansive (saved_anything_own γ).
Proof. solve_proper. Qed.
Global Instance saved_anything_proper γ : Proper (() ==> ()) (saved_anything_own γ).
Proof. solve_proper. Qed.
Lemma saved_prop_alloc_strong x (G : gset gname) :
(|==> γ, γ G saved_prop_own γ x)%I.
Lemma saved_anything_alloc_strong x (G : gset gname) :
(|==> γ, γ G saved_anything_own γ x)%I.
Proof. by apply own_alloc_strong. Qed.
Lemma saved_prop_alloc x : (|==> γ, saved_prop_own γ x)%I.
Lemma saved_anything_alloc x : (|==> γ, saved_anything_own γ x)%I.
Proof. by apply own_alloc. Qed.
Lemma saved_prop_agree γ x y :
saved_prop_own γ x -∗ saved_prop_own γ y -∗ (x y).
Lemma saved_anything_agree γ x y :
saved_anything_own γ x -∗ saved_anything_own γ y -∗ x y.
Proof.
apply wand_intro_r.
rewrite -own_op own_valid agree_validI agree_equivI later_equivI.
iIntros "Hx Hy". rewrite /saved_anything_own.
iDestruct (own_valid_2 with "Hx Hy") as "Hv".
rewrite agree_validI agree_equivI.
set (G1 := cFunctor_map F (iProp_fold, iProp_unfold)).
set (G2 := cFunctor_map F (@iProp_unfold Σ, @iProp_fold Σ)).
assert ( z, G2 (G1 z) z) as help.
{ intros z. rewrite /G1 /G2 -cFunctor_compose -{2}[z]cFunctor_id.
apply (ne_proper (cFunctor_map F)); split=>?; apply iProp_fold_unfold. }
rewrite -{2}[x]help -{2}[y]help. apply later_mono, f_equiv, _.
rewrite -{2}[x]help -{2}[y]help. by iApply f_equiv.
Qed.
End saved_prop.
End saved_anything.
(** Provide specialized versions of this for convenience. **)
(* Saved propositions. *)
Notation savedPropG Σ := (savedAnythingG Σ ( )).
Notation savedPropΣ := (savedAnythingΣ ( )).
Definition saved_prop_own `{savedPropG Σ} (γ : gname) (P: iProp Σ) :=
saved_anything_own (F := ) γ (Next P).
Instance saved_prop_own_contractive `{savedPropG Σ} γ :
Contractive (saved_prop_own γ).
Proof. solve_contractive. Qed.
Lemma saved_prop_alloc_strong `{savedPropG Σ} (G : gset gname) (P: iProp Σ) :
(|==> γ, γ G saved_prop_own γ P)%I.
Proof. iApply saved_anything_alloc_strong. Qed.
Lemma saved_prop_alloc `{savedPropG Σ} (P: iProp Σ) :
(|==> γ, saved_prop_own γ P)%I.
Proof. iApply saved_anything_alloc. Qed.
Lemma saved_prop_agree `{savedPropG Σ} γ P Q :
saved_prop_own γ P -∗ saved_prop_own γ Q -∗ (P Q).
Proof.
iIntros "HP HQ". iApply later_equivI. iApply (saved_anything_agree with "HP HQ").
Qed.
(* Saved predicates. *)
Notation savedPredG Σ A := (savedAnythingG Σ (constCF A -n> )).
Notation savedPredΣ A := (savedAnythingΣ (constCF A -n> )).
Definition saved_pred_own `{savedPredG Σ A} (γ : gname) (Φ : A -n> iProp Σ) :=
saved_anything_own (F := A -n> ) γ (CofeMor Next Φ).
Instance saved_pred_own_contractive `{savedPredG Σ A} γ : Contractive (saved_pred_own γ).
Proof.
solve_proper_core ltac:(fun _ => first [ intros ?; progress simpl | f_contractive | f_equiv ]).
Qed.
Lemma saved_pred_alloc_strong `{savedPredG Σ A} (G : gset gname) (Φ : A -n> iProp Σ) :
(|==> γ, γ G saved_pred_own γ Φ)%I.
Proof. iApply saved_anything_alloc_strong. Qed.
Lemma saved_pred_alloc `{savedPredG Σ A} (Φ : A -n> iProp Σ) :
(|==> γ, saved_pred_own γ Φ)%I.
Proof. iApply saved_anything_alloc. Qed.
(* We put the `x` on the outside to make this lemma easier to apply. *)
Lemma saved_pred_agree `{savedPredG Σ A} γ Φ Ψ x :
saved_pred_own γ Φ -∗ saved_pred_own γ Ψ -∗ (Φ x Ψ x).
Proof.
iIntros "HΦ HΨ". unfold saved_pred_own. iApply later_equivI.
iDestruct (ofe_morC_equivI (CofeMor Next Φ) (CofeMor Next Ψ)) as "[FE _]".
simpl. iApply ("FE" with "[-]").
iApply (saved_anything_agree with "HΦ HΨ").
Qed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment