Skip to content
Snippets Groups Projects
Commit 873f2d0a authored by Jacques-Henri Jourdan's avatar Jacques-Henri Jourdan
Browse files

Add instances to boxes.

parent 4ad619de
No related branches found
No related tags found
No related merge requests found
...@@ -62,6 +62,8 @@ Global Instance slice_ne γ : NonExpansive (slice N γ). ...@@ -62,6 +62,8 @@ Global Instance slice_ne γ : NonExpansive (slice N γ).
Proof. solve_proper. Qed. Proof. solve_proper. Qed.
Global Instance slice_contractive γ : Contractive (slice N γ). Global Instance slice_contractive γ : Contractive (slice N γ).
Proof. solve_contractive. Qed. Proof. solve_contractive. Qed.
Global Instance slice_proper γ : Proper (() ==> ()) (slice N γ).
Proof. apply ne_proper, _. Qed.
Global Instance slice_persistent γ P : PersistentP (slice N γ P). Global Instance slice_persistent γ P : PersistentP (slice N γ P).
Proof. apply _. Qed. Proof. apply _. Qed.
...@@ -70,6 +72,8 @@ Global Instance box_contractive f : Contractive (box N f). ...@@ -70,6 +72,8 @@ Global Instance box_contractive f : Contractive (box N f).
Proof. solve_contractive. Qed. Proof. solve_contractive. Qed.
Global Instance box_ne f : NonExpansive (box N f). Global Instance box_ne f : NonExpansive (box N f).
Proof. apply (contractive_ne _). Qed. Proof. apply (contractive_ne _). Qed.
Global Instance box_proper f : Proper (() ==> ()) (box N f).
Proof. apply ne_proper, _. Qed.
Lemma box_own_auth_agree γ b1 b2 : Lemma box_own_auth_agree γ b1 b2 :
box_own_auth γ ( Excl' b1) box_own_auth γ ( Excl' b2) b1 = b2⌝. box_own_auth γ ( Excl' b1) box_own_auth γ ( Excl' b2) b1 = b2⌝.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment