Skip to content
Snippets Groups Projects
Commit 625d60c3 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Some useful BI derived lemmas.

parent ea07fcbc
No related branches found
No related tags found
No related merge requests found
......@@ -385,6 +385,9 @@ Proof.
apply wand_intro_l. rewrite left_absorb. auto.
Qed.
Lemma wand_trans P Q R : (P -∗ Q) (Q -∗ R) (P -∗ R).
Proof. apply wand_intro_l. by rewrite assoc !wand_elim_r. Qed.
Lemma wand_curry P Q R : (P -∗ Q -∗ R) ⊣⊢ (P Q -∗ R).
Proof.
apply (anti_symm _).
......@@ -429,6 +432,9 @@ Lemma wand_entails P Q : (P -∗ Q)%I → P ⊢ Q.
Proof. intros. rewrite -[P]emp_sep. by apply wand_elim_l'. Qed.
Lemma entails_wand P Q : (P Q) (P -∗ Q)%I.
Proof. intros ->. apply wand_intro_r. by rewrite left_id. Qed.
(* A version that works with rewrite, in which bi_emp_valid is unfolded. *)
Lemma entails_wand' P Q : (P Q) emp (P -∗ Q).
Proof. apply entails_wand. Qed.
Lemma equiv_wand_iff P Q : (P ⊣⊢ Q) (P ∗-∗ Q)%I.
Proof. intros ->; apply wand_iff_refl. Qed.
......
......@@ -188,6 +188,9 @@ Proof.
apply plainly_mono, impl_elim with P; auto.
Qed.
Lemma plainly_emp_2 : emp ⊢@{PROP} emp.
Proof. apply plainly_emp_intro. Qed.
Lemma plainly_sep_dup P : P ⊣⊢ P P.
Proof.
apply (anti_symm _).
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment