Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Abhishek Anand
Iris
Commits
6092efe9
Commit
6092efe9
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Prove iff_equiv in the logic (instead of the model).
parent
7a822edf
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
algebra/upred.v
+10
-7
10 additions, 7 deletions
algebra/upred.v
with
10 additions
and
7 deletions
algebra/upred.v
+
10
−
7
View file @
6092efe9
...
@@ -509,11 +509,6 @@ Proof.
...
@@ -509,11 +509,6 @@ Proof.
unseal
=>
Hab
;
apply
equiv_dist
;
intros
n
;
apply
Hab
with
∅
;
last
done
.
unseal
=>
Hab
;
apply
equiv_dist
;
intros
n
;
apply
Hab
with
∅
;
last
done
.
apply
cmra_valid_validN
,
cmra_unit_valid
.
apply
cmra_valid_validN
,
cmra_unit_valid
.
Qed
.
Qed
.
Lemma
iff_equiv
P
Q
:
True
⊢
(
P
↔
Q
)
→
P
⊣⊢
Q
.
Proof
.
rewrite
/
uPred_iff
;
unseal
=>
HPQ
.
split
=>
n
x
?;
split
;
intros
;
by
apply
HPQ
with
n
x
.
Qed
.
(* Derived logical stuff *)
(* Derived logical stuff *)
Lemma
True_intro
P
:
P
⊢
True
.
Lemma
True_intro
P
:
P
⊢
True
.
...
@@ -550,6 +545,16 @@ Proof. intros HPQ; apply impl_elim with P; rewrite -?HPQ; auto. Qed.
...
@@ -550,6 +545,16 @@ Proof. intros HPQ; apply impl_elim with P; rewrite -?HPQ; auto. Qed.
Lemma
entails_impl
P
Q
:
(
P
⊢
Q
)
→
True
⊢
(
P
→
Q
)
.
Lemma
entails_impl
P
Q
:
(
P
⊢
Q
)
→
True
⊢
(
P
→
Q
)
.
Proof
.
auto
using
impl_intro_l
.
Qed
.
Proof
.
auto
using
impl_intro_l
.
Qed
.
Lemma
iff_refl
Q
P
:
Q
⊢
(
P
↔
P
)
.
Proof
.
rewrite
/
uPred_iff
;
apply
and_intro
;
apply
impl_intro_l
;
auto
.
Qed
.
Lemma
iff_equiv
P
Q
:
True
⊢
(
P
↔
Q
)
→
P
⊣⊢
Q
.
Proof
.
intros
HPQ
;
apply
(
anti_symm
(
⊢
));
apply
impl_entails
;
rewrite
HPQ
/
uPred_iff
;
auto
.
Qed
.
Lemma
equiv_iff
P
Q
:
P
⊣⊢
Q
→
True
⊢
(
P
↔
Q
)
.
Proof
.
intros
->
;
apply
iff_refl
.
Qed
.
Lemma
const_mono
φ1
φ2
:
(
φ1
→
φ2
)
→
■
φ1
⊢
■
φ2
.
Lemma
const_mono
φ1
φ2
:
(
φ1
→
φ2
)
→
■
φ1
⊢
■
φ2
.
Proof
.
intros
;
apply
const_elim
with
φ1
;
eauto
using
const_intro
.
Qed
.
Proof
.
intros
;
apply
const_elim
with
φ1
;
eauto
using
const_intro
.
Qed
.
Lemma
and_mono
P
P'
Q
Q'
:
P
⊢
Q
→
P'
⊢
Q'
→
(
P
∧
P'
)
⊢
(
Q
∧
Q'
)
.
Lemma
and_mono
P
P'
Q
Q'
:
P
⊢
Q
→
P'
⊢
Q'
→
(
P
∧
P'
)
⊢
(
Q
∧
Q'
)
.
...
@@ -633,8 +638,6 @@ Proof.
...
@@ -633,8 +638,6 @@ Proof.
-
by
rewrite
-
(
left_id
True
%
I
uPred_and
(_
→
_)
%
I
)
impl_elim_r
.
-
by
rewrite
-
(
left_id
True
%
I
uPred_and
(_
→
_)
%
I
)
impl_elim_r
.
-
by
apply
impl_intro_l
;
rewrite
left_id
.
-
by
apply
impl_intro_l
;
rewrite
left_id
.
Qed
.
Qed
.
Lemma
iff_refl
Q
P
:
Q
⊢
(
P
↔
P
)
.
Proof
.
rewrite
/
uPred_iff
;
apply
and_intro
;
apply
impl_intro_l
;
auto
.
Qed
.
Lemma
or_and_l
P
Q
R
:
(
P
∨
Q
∧
R
)
⊣⊢
((
P
∨
Q
)
∧
(
P
∨
R
))
.
Lemma
or_and_l
P
Q
R
:
(
P
∨
Q
∧
R
)
⊣⊢
((
P
∨
Q
)
∧
(
P
∨
R
))
.
Proof
.
Proof
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment