Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Abhishek Anand
Iris
Commits
1a1aa388
Commit
1a1aa388
authored
7 years ago
by
Jacques-Henri Jourdan
Browse files
Options
Downloads
Patches
Plain Diff
limit_preserving_entails can be proved for any bi.
parent
e9ac097a
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
theories/base_logic/derived.v
+0
-22
0 additions, 22 deletions
theories/base_logic/derived.v
theories/bi/derived_laws.v
+26
-0
26 additions, 0 deletions
theories/bi/derived_laws.v
with
26 additions
and
22 deletions
theories/base_logic/derived.v
+
0
−
22
View file @
1a1aa388
...
@@ -15,22 +15,6 @@ Implicit Types A : Type.
...
@@ -15,22 +15,6 @@ Implicit Types A : Type.
Notation
"P ⊢ Q"
:=
(
bi_entails
(
PROP
:=
uPredI
M
)
P
%
I
Q
%
I
)
.
Notation
"P ⊢ Q"
:=
(
bi_entails
(
PROP
:=
uPredI
M
)
P
%
I
Q
%
I
)
.
Notation
"P ⊣⊢ Q"
:=
(
equiv
(
A
:=
uPredI
M
)
P
%
I
Q
%
I
)
.
Notation
"P ⊣⊢ Q"
:=
(
equiv
(
A
:=
uPredI
M
)
P
%
I
Q
%
I
)
.
(* Limits *)
Lemma
limit_preserving_entails
{
A
:
ofeT
}
`{
Cofe
A
}
(
Φ
Ψ
:
A
→
uPred
M
)
:
NonExpansive
Φ
→
NonExpansive
Ψ
→
LimitPreserving
(
λ
x
,
Φ
x
⊢
Ψ
x
)
.
Proof
.
intros
HΦ
HΨ
c
Hc
.
etrans
;
[
apply
equiv_spec
,
compl_chain_map
|]
.
etrans
;
[|
apply
equiv_spec
,
symmetry
,
compl_chain_map
]
.
by
apply
entails_lim
.
Qed
.
Lemma
limit_preserving_equiv
{
A
:
ofeT
}
`{
Cofe
A
}
(
Φ
Ψ
:
A
→
uPred
M
)
:
NonExpansive
Φ
→
NonExpansive
Ψ
→
LimitPreserving
(
λ
x
,
Φ
x
⊣⊢
Ψ
x
)
.
Proof
.
intros
HΦ
HΨ
.
eapply
limit_preserving_ext
.
{
intros
x
.
symmetry
;
apply
equiv_spec
.
}
apply
limit_preserving_and
;
by
apply
limit_preserving_entails
.
Qed
.
(* Own and valid derived *)
(* Own and valid derived *)
Lemma
persistently_cmra_valid_1
{
A
:
cmraT
}
(
a
:
A
)
:
Lemma
persistently_cmra_valid_1
{
A
:
cmraT
}
(
a
:
A
)
:
✓
a
⊢
bi_persistently
(
✓
a
:
uPred
M
)
.
✓
a
⊢
bi_persistently
(
✓
a
:
uPred
M
)
.
...
@@ -96,9 +80,6 @@ Proof.
...
@@ -96,9 +80,6 @@ Proof.
Qed
.
Qed
.
(* Plainness *)
(* Plainness *)
Global
Instance
limit_preserving_Plain
{
A
:
ofeT
}
`{
Cofe
A
}
(
Φ
:
A
→
uPred
M
)
:
NonExpansive
Φ
→
LimitPreserving
(
λ
x
,
Plain
(
Φ
x
))
.
Proof
.
intros
.
apply
limit_preserving_entails
;
solve_proper
.
Qed
.
Global
Instance
cmra_valid_plain
{
A
:
cmraT
}
(
a
:
A
)
:
Global
Instance
cmra_valid_plain
{
A
:
cmraT
}
(
a
:
A
)
:
Plain
(
✓
a
:
uPred
M
)
%
I
.
Plain
(
✓
a
:
uPred
M
)
%
I
.
Proof
.
rewrite
/
Persistent
.
apply
plainly_cmra_valid_1
.
Qed
.
Proof
.
rewrite
/
Persistent
.
apply
plainly_cmra_valid_1
.
Qed
.
...
@@ -110,9 +91,6 @@ Lemma bupd_plain P `{!Plain P} : (|==> P) ⊢ P.
...
@@ -110,9 +91,6 @@ Lemma bupd_plain P `{!Plain P} : (|==> P) ⊢ P.
Proof
.
by
rewrite
-
{
1
}(
plain_plainly
P
)
bupd_plainly
.
Qed
.
Proof
.
by
rewrite
-
{
1
}(
plain_plainly
P
)
bupd_plainly
.
Qed
.
(* Persistence *)
(* Persistence *)
Global
Instance
limit_preserving_Persistent
{
A
:
ofeT
}
`{
Cofe
A
}
(
Φ
:
A
→
uPred
M
)
:
NonExpansive
Φ
→
LimitPreserving
(
λ
x
,
Persistent
(
Φ
x
))
.
Proof
.
intros
.
apply
limit_preserving_entails
;
solve_proper
.
Qed
.
Global
Instance
cmra_valid_persistent
{
A
:
cmraT
}
(
a
:
A
)
:
Global
Instance
cmra_valid_persistent
{
A
:
cmraT
}
(
a
:
A
)
:
Persistent
(
✓
a
:
uPred
M
)
%
I
.
Persistent
(
✓
a
:
uPred
M
)
%
I
.
Proof
.
rewrite
/
Persistent
.
apply
persistently_cmra_valid_1
.
Qed
.
Proof
.
rewrite
/
Persistent
.
apply
persistently_cmra_valid_1
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
theories/bi/derived_laws.v
+
26
−
0
View file @
1a1aa388
...
@@ -1846,6 +1846,32 @@ Proof.
...
@@ -1846,6 +1846,32 @@ Proof.
+
apply
forall_intro
=>
x
;
rewrite
-
IH
;
apply
forall_intro
=>
xs
.
+
apply
forall_intro
=>
x
;
rewrite
-
IH
;
apply
forall_intro
=>
xs
.
by
rewrite
(
forall_elim
(
hcons
x
xs
))
.
by
rewrite
(
forall_elim
(
hcons
x
xs
))
.
Qed
.
Qed
.
(* Limits *)
Lemma
limit_preserving_entails
{
A
:
ofeT
}
`{
Cofe
A
}
(
Φ
Ψ
:
A
→
PROP
)
:
NonExpansive
Φ
→
NonExpansive
Ψ
→
LimitPreserving
(
λ
x
,
Φ
x
⊢
Ψ
x
)
.
Proof
.
intros
HΦ
HΨ
c
Hc
.
assert
(
Heq
:
∀
P
Q
:
PROP
,
(
∀
n
,
(
P
→
Q
)
%
I
≡
{
n
}
≡
True
%
I
)
↔
(
P
-∗
Q
))
.
{
intros
??
.
rewrite
-
equiv_dist
.
split
=>
EQ
.
-
by
rewrite
-
(
left_id
True
%
I
bi_and
P
)
-
EQ
impl_elim_l
.
-
apply
bi
.
equiv_spec
;
split
;
[
by
apply
True_intro
|]
.
apply
impl_intro_l
.
by
rewrite
right_id
.
}
apply
Heq
=>
n
.
rewrite
conv_compl
.
by
apply
Heq
.
Qed
.
Lemma
limit_preserving_equiv
{
A
:
ofeT
}
`{
Cofe
A
}
(
Φ
Ψ
:
A
→
PROP
)
:
NonExpansive
Φ
→
NonExpansive
Ψ
→
LimitPreserving
(
λ
x
,
Φ
x
⊣⊢
Ψ
x
)
.
Proof
.
intros
HΦ
HΨ
.
eapply
limit_preserving_ext
.
{
intros
x
.
symmetry
;
apply
equiv_spec
.
}
apply
limit_preserving_and
;
by
apply
limit_preserving_entails
.
Qed
.
Global
Instance
limit_preserving_Plain
{
A
:
ofeT
}
`{
Cofe
A
}
(
Φ
:
A
→
PROP
)
:
NonExpansive
Φ
→
LimitPreserving
(
λ
x
,
Plain
(
Φ
x
))
.
Proof
.
intros
.
apply
limit_preserving_entails
;
solve_proper
.
Qed
.
Global
Instance
limit_preserving_Persistent
{
A
:
ofeT
}
`{
Cofe
A
}
(
Φ
:
A
→
PROP
)
:
NonExpansive
Φ
→
LimitPreserving
(
λ
x
,
Persistent
(
Φ
x
))
.
Proof
.
intros
.
apply
limit_preserving_entails
;
solve_proper
.
Qed
.
End
bi_derived
.
End
bi_derived
.
Section
sbi_derived
.
Section
sbi_derived
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment