Skip to content
Snippets Groups Projects
Commit 1a1aa388 authored by Jacques-Henri Jourdan's avatar Jacques-Henri Jourdan
Browse files

limit_preserving_entails can be proved for any bi.

parent e9ac097a
No related branches found
No related tags found
No related merge requests found
...@@ -15,22 +15,6 @@ Implicit Types A : Type. ...@@ -15,22 +15,6 @@ Implicit Types A : Type.
Notation "P ⊢ Q" := (bi_entails (PROP:=uPredI M) P%I Q%I). Notation "P ⊢ Q" := (bi_entails (PROP:=uPredI M) P%I Q%I).
Notation "P ⊣⊢ Q" := (equiv (A:=uPredI M) P%I Q%I). Notation "P ⊣⊢ Q" := (equiv (A:=uPredI M) P%I Q%I).
(* Limits *)
Lemma limit_preserving_entails {A : ofeT} `{Cofe A} (Φ Ψ : A uPred M) :
NonExpansive Φ NonExpansive Ψ LimitPreserving (λ x, Φ x Ψ x).
Proof.
intros c Hc. etrans; [apply equiv_spec, compl_chain_map|].
etrans; [|apply equiv_spec, symmetry, compl_chain_map].
by apply entails_lim.
Qed.
Lemma limit_preserving_equiv {A : ofeT} `{Cofe A} (Φ Ψ : A uPred M) :
NonExpansive Φ NonExpansive Ψ LimitPreserving (λ x, Φ x ⊣⊢ Ψ x).
Proof.
intros . eapply limit_preserving_ext.
{ intros x. symmetry; apply equiv_spec. }
apply limit_preserving_and; by apply limit_preserving_entails.
Qed.
(* Own and valid derived *) (* Own and valid derived *)
Lemma persistently_cmra_valid_1 {A : cmraT} (a : A) : Lemma persistently_cmra_valid_1 {A : cmraT} (a : A) :
a bi_persistently ( a : uPred M). a bi_persistently ( a : uPred M).
...@@ -96,9 +80,6 @@ Proof. ...@@ -96,9 +80,6 @@ Proof.
Qed. Qed.
(* Plainness *) (* Plainness *)
Global Instance limit_preserving_Plain {A:ofeT} `{Cofe A} (Φ : A uPred M) :
NonExpansive Φ LimitPreserving (λ x, Plain (Φ x)).
Proof. intros. apply limit_preserving_entails; solve_proper. Qed.
Global Instance cmra_valid_plain {A : cmraT} (a : A) : Global Instance cmra_valid_plain {A : cmraT} (a : A) :
Plain ( a : uPred M)%I. Plain ( a : uPred M)%I.
Proof. rewrite /Persistent. apply plainly_cmra_valid_1. Qed. Proof. rewrite /Persistent. apply plainly_cmra_valid_1. Qed.
...@@ -110,9 +91,6 @@ Lemma bupd_plain P `{!Plain P} : (|==> P) ⊢ P. ...@@ -110,9 +91,6 @@ Lemma bupd_plain P `{!Plain P} : (|==> P) ⊢ P.
Proof. by rewrite -{1}(plain_plainly P) bupd_plainly. Qed. Proof. by rewrite -{1}(plain_plainly P) bupd_plainly. Qed.
(* Persistence *) (* Persistence *)
Global Instance limit_preserving_Persistent {A:ofeT} `{Cofe A} (Φ : A uPred M) :
NonExpansive Φ LimitPreserving (λ x, Persistent (Φ x)).
Proof. intros. apply limit_preserving_entails; solve_proper. Qed.
Global Instance cmra_valid_persistent {A : cmraT} (a : A) : Global Instance cmra_valid_persistent {A : cmraT} (a : A) :
Persistent ( a : uPred M)%I. Persistent ( a : uPred M)%I.
Proof. rewrite /Persistent. apply persistently_cmra_valid_1. Qed. Proof. rewrite /Persistent. apply persistently_cmra_valid_1. Qed.
......
...@@ -1846,6 +1846,32 @@ Proof. ...@@ -1846,6 +1846,32 @@ Proof.
+ apply forall_intro=> x; rewrite -IH; apply forall_intro=> xs. + apply forall_intro=> x; rewrite -IH; apply forall_intro=> xs.
by rewrite (forall_elim (hcons x xs)). by rewrite (forall_elim (hcons x xs)).
Qed. Qed.
(* Limits *)
Lemma limit_preserving_entails {A : ofeT} `{Cofe A} (Φ Ψ : A PROP) :
NonExpansive Φ NonExpansive Ψ LimitPreserving (λ x, Φ x Ψ x).
Proof.
intros c Hc.
assert (Heq : P Q : PROP, ( n, (P Q)%I {n} True%I) (P -∗ Q)).
{ intros ??. rewrite -equiv_dist. split=>EQ.
- by rewrite -(left_id True%I bi_and P) -EQ impl_elim_l.
- apply bi.equiv_spec; split; [by apply True_intro|].
apply impl_intro_l. by rewrite right_id. }
apply Heq=>n. rewrite conv_compl. by apply Heq.
Qed.
Lemma limit_preserving_equiv {A : ofeT} `{Cofe A} (Φ Ψ : A PROP) :
NonExpansive Φ NonExpansive Ψ LimitPreserving (λ x, Φ x ⊣⊢ Ψ x).
Proof.
intros . eapply limit_preserving_ext.
{ intros x. symmetry; apply equiv_spec. }
apply limit_preserving_and; by apply limit_preserving_entails.
Qed.
Global Instance limit_preserving_Plain {A:ofeT} `{Cofe A} (Φ : A PROP) :
NonExpansive Φ LimitPreserving (λ x, Plain (Φ x)).
Proof. intros. apply limit_preserving_entails; solve_proper. Qed.
Global Instance limit_preserving_Persistent {A:ofeT} `{Cofe A} (Φ : A PROP) :
NonExpansive Φ LimitPreserving (λ x, Persistent (Φ x)).
Proof. intros. apply limit_preserving_entails; solve_proper. Qed.
End bi_derived. End bi_derived.
Section sbi_derived. Section sbi_derived.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment