Skip to content
Snippets Groups Projects
Commit 186ffb07 authored by Ralf Jung's avatar Ralf Jung
Browse files

a BI is affine iff True |- emp

parent 47250f79
No related branches found
No related tags found
No related merge requests found
......@@ -673,6 +673,15 @@ Proof. apply (anti_symm _); auto using True_sep_2. Qed.
Lemma sep_True P `{!Absorbing P} : P True ⊣⊢ P.
Proof. by rewrite comm True_sep. Qed.
Lemma True_emp_iff_BiAffine :
BiAffine PROP (True emp).
Proof.
split.
- intros ?. exact: affine.
- rewrite /BiAffine /Affine=>Hemp ?. rewrite -Hemp.
exact: True_intro.
Qed.
Section bi_affine.
Context `{BiAffine PROP}.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment