Skip to content
Snippets Groups Projects
Commit 0523bbf3 authored by Ralf Jung's avatar Ralf Jung
Browse files

add dedicated type for atomicity

parent 45ab3f31
No related branches found
No related tags found
No related merge requests found
......@@ -189,7 +189,7 @@ Definition is_atomic (e : expr) :=
end.
Lemma is_atomic_correct s e : is_atomic e Atomic s (to_expr e).
Proof.
enough (is_atomic e Atomic maybe_stuck (to_expr e)).
enough (is_atomic e Atomic strongly_atomic (to_expr e)).
{ destruct s; auto using strongly_atomic_atomic. }
intros He. apply ectx_language_atomic.
- intros σ e' σ' ef Hstep; simpl in *. revert Hstep.
......
......@@ -129,10 +129,10 @@ Section ectx_language.
Canonical Structure ectx_lang : language := Language ectx_lang_mixin.
Definition HeadAtomic (s : stuckness) (e : expr Λ) : Prop :=
Definition head_atomic (a : atomicity) (e : expr Λ) : Prop :=
σ e' σ' efs,
head_step e σ e' σ' efs
if s is not_stuck then irreducible e' σ' else is_Some (to_val e').
if a is weakly_atomic then irreducible e' σ' else is_Some (to_val e').
(* Some lemmas about this language *)
Lemma fill_not_val K e : to_val e = None to_val (fill K e) = None.
......@@ -173,8 +173,8 @@ Section ectx_language.
apply (Hirr empty_ectx). by rewrite fill_empty.
Qed.
Lemma ectx_language_atomic s e :
HeadAtomic s e sub_redexes_are_values e Atomic s e.
Lemma ectx_language_atomic a e :
head_atomic a e sub_redexes_are_values e Atomic a e.
Proof.
intros Hatomic_step Hatomic_fill σ e' σ' efs [K e1' e2' -> -> Hstep].
assert (K = empty_ectx) as -> by eauto 10 using val_head_stuck.
......
......@@ -58,7 +58,7 @@ Lemma ht_mono s E P P' Φ Φ' e :
(P P') ( v, Φ' v Φ v) {{ P' }} e @ s; E {{ Φ' }} {{ P }} e @ s; E {{ Φ }}.
Proof. by intros; apply persistently_mono, wand_mono, wp_mono. Qed.
Lemma ht_stuck_mono s1 s2 E P Φ e :
(s1 s2)%stuckness {{ P }} e @ s1; E {{ Φ }} {{ P }} e @ s2; E {{ Φ }}.
stuckness_le s1 s2 {{ P }} e @ s1; E {{ Φ }} {{ P }} e @ s2; E {{ Φ }}.
Proof. by intros; apply persistently_mono, wand_mono, wp_stuck_mono. Qed.
Global Instance ht_mono' s E :
Proper (flip () ==> eq ==> pointwise_relation _ () ==> ()) (ht s E).
......@@ -79,7 +79,7 @@ Proof.
iIntros (v) "Hv". by iApply "HΦ".
Qed.
Lemma ht_atomic s E1 E2 P P' Φ Φ' e `{!Atomic s e} :
Lemma ht_atomic s E1 E2 P P' Φ Φ' e `{!Atomic (stuckness_to_atomicity s) e} :
(P ={E1,E2}=> P') {{ P' }} e @ s; E2 {{ Φ' }} ( v, Φ' v ={E2,E1}=> Φ v)
{{ P }} e @ s; E1 {{ Φ }}.
Proof.
......
......@@ -53,19 +53,7 @@ Class LanguageCtx {Λ : language} (K : expr Λ → expr Λ) := {
Instance language_ctx_id Λ : LanguageCtx (@id (expr Λ)).
Proof. constructor; naive_solver. Qed.
Variant stuckness := not_stuck | maybe_stuck.
Definition stuckness_le (s1 s2 : stuckness) : bool :=
match s1, s2 with
| maybe_stuck, not_stuck => false
| _, _ => true
end.
Instance: @PreOrder stuckness stuckness_le.
Proof.
split; first by case. move=>s1 s2 s3. by case: s1; case: s2; case: s3.
Qed.
Bind Scope stuckness_scope with stuckness.
Delimit Scope stuckness_scope with stuckness.
Infix "≤" := stuckness_le : stuckness_scope.
Inductive atomicity := strongly_atomic | weakly_atomic.
Section language.
Context {Λ : language}.
......@@ -86,21 +74,21 @@ Section language.
Definition stuck (e : expr Λ) (σ : state Λ) :=
to_val e = None irreducible e σ.
(* [Atomic not_stuck]: This (weak) form of atomicity is enough to open invariants when WP ensures
safety, i.e., programs never can get stuck. We have an example in
lambdaRust of an expression that is atomic in this sense, but not in the
stronger sense defined below, and we have to be able to open invariants
around that expression. See `CasStuckS` in
(* [Atomic weakly_atomic]: This (weak) form of atomicity is enough to open
invariants when WP ensures safety, i.e., programs never can get stuck. We
have an example in lambdaRust of an expression that is atomic in this
sense, but not in the stronger sense defined below, and we have to be able
to open invariants around that expression. See `CasStuckS` in
[lambdaRust](https://gitlab.mpi-sws.org/FP/LambdaRust-coq/blob/master/theories/lang/lang.v).
[Atomic maybe_stuck]: To open invariants with a WP that does not ensure safety, we need a
stronger form of atomicity. With the above definition, in case `e` reduces
to a stuck non-value, there is no proof that the invariants have been
established again. *)
Class Atomic (s : stuckness) (e : expr Λ) : Prop :=
[Atomic strongly_atomic]: To open invariants with a WP that does not ensure
safety, we need a stronger form of atomicity. With the above definition,
in case `e` reduces to a stuck non-value, there is no proof that the
invariants have been established again. *)
Class Atomic (a : atomicity) (e : expr Λ) : Prop :=
atomic σ e' σ' efs :
prim_step e σ e' σ' efs
if s is not_stuck then irreducible e' σ' else is_Some (to_val e').
if a is weakly_atomic then irreducible e' σ' else is_Some (to_val e').
Inductive step (ρ1 ρ2 : cfg Λ) : Prop :=
| step_atomic e1 σ1 e2 σ2 efs t1 t2 :
......@@ -121,7 +109,8 @@ Section language.
Global Instance of_val_inj : Inj (=) (=) (@of_val Λ).
Proof. by intros v v' Hv; apply (inj Some); rewrite -!to_of_val Hv. Qed.
Lemma strongly_atomic_atomic e : Atomic maybe_stuck e Atomic not_stuck e.
Lemma strongly_atomic_atomic e :
Atomic strongly_atomic e Atomic weakly_atomic e.
Proof. unfold Atomic. eauto using val_irreducible. Qed.
Lemma reducible_fill `{LanguageCtx Λ K} e σ :
......
......@@ -11,6 +11,17 @@ Class irisG' (Λstate : Type) (Σ : gFunctors) := IrisG {
}.
Notation irisG Λ Σ := (irisG' (state Λ) Σ).
Inductive stuckness := not_stuck | maybe_stuck.
Definition stuckness_le (s1 s2 : stuckness) : bool :=
match s1, s2 with
| maybe_stuck, not_stuck => false
| _, _ => true
end.
Instance: PreOrder stuckness_le.
Proof.
split; first by case. move=>s1 s2 s3. by case: s1; case: s2; case: s3.
Qed.
Definition wp_pre `{irisG Λ Σ} (s : stuckness)
(wp : coPset -c> expr Λ -c> (val Λ -c> iProp Σ) -c> iProp Σ) :
coPset -c> expr Λ -c> (val Λ -c> iProp Σ) -c> iProp Σ := λ E e1 Φ,
......@@ -233,7 +244,10 @@ Qed.
Lemma wp_fupd s E e Φ : WP e @ s; E {{ v, |={E}=> Φ v }} WP e @ s; E {{ Φ }}.
Proof. iIntros "H". iApply (wp_strong_mono s E); try iFrame; auto. Qed.
Lemma wp_atomic s E1 E2 e Φ `{Hatomic : !Atomic s e} :
Definition stuckness_to_atomicity s :=
if s is maybe_stuck then strongly_atomic else weakly_atomic.
Lemma wp_atomic s E1 E2 e Φ `{!Atomic (stuckness_to_atomicity s) e} :
(|={E1,E2}=> WP e @ s; E2 {{ v, |={E2,E1}=> Φ v }}) WP e @ s; E1 {{ Φ }}.
Proof.
iIntros "H". rewrite !wp_unfold /wp_pre.
......@@ -245,8 +259,8 @@ Proof.
rewrite !wp_unfold /wp_pre. destruct (to_val e2) as [v2|] eqn:He2.
+ iDestruct "H" as ">> $". by iFrame.
+ iMod ("H" with "[$]") as "[H _]". iDestruct "H" as %(? & ? & ? & ?).
by edestruct (Hatomic _ _ _ _ Hstep).
- destruct (Hatomic _ _ _ _ Hstep) as [v <-%of_to_val].
by edestruct (atomic _ _ _ _ Hstep).
- destruct (atomic _ _ _ _ Hstep) as [v <-%of_to_val].
iMod ("H" with "[#]") as "($ & H & $)"; first done.
iMod (wp_value_inv with "H") as ">H". by iApply wp_value'.
Qed.
......@@ -300,7 +314,7 @@ Proof.
iIntros "{$H}" (v) "?". by iApply .
Qed.
Lemma wp_stuck_mono s1 s2 E e Φ :
(s1 s2)%stuckness WP e @ s1; E {{ Φ }} WP e @ s2; E {{ Φ }}.
stuckness_le s1 s2 WP e @ s1; E {{ Φ }} WP e @ s2; E {{ Φ }}.
Proof. case: s1; case: s2 => // _. exact: wp_stuck_weaken. Qed.
Lemma wp_mask_mono s E1 E2 e Φ : E1 E2 WP e @ s; E1 {{ Φ }} WP e @ s; E2 {{ Φ }}.
Proof. iIntros (?) "H"; iApply (wp_strong_mono s E1 E2); auto. iFrame; eauto. Qed.
......@@ -379,7 +393,7 @@ Section proofmode_classes.
(* lower precedence, if possible, it should persistently pick elim_upd_fupd_wp *)
Global Instance elim_modal_fupd_wp_atomic s E1 E2 e P Φ :
Atomic s e
Atomic (stuckness_to_atomicity s) e
ElimModal (|={E1,E2}=> P) P
(WP e @ s; E1 {{ Φ }}) (WP e @ s; E2 {{ v, |={E2,E1}=> Φ v }})%I | 100.
Proof. intros. by rewrite /ElimModal fupd_frame_r wand_elim_r wp_atomic. Qed.
......
......@@ -101,7 +101,7 @@ update modalities (which we did not cover in the paper). Normally we use these
mask changing update modalities directly in our proofs, but in this file we use
the first prove the rule as a lemma, and then use that. *)
Lemma wp_inv_open `{irisG Λ Σ} N E P e Φ :
nclose N E Atomic not_stuck e
nclose N E Atomic weakly_atomic e
inv N P ( P -∗ WP e @ E N {{ v, P Φ v }}) WP e @ E {{ Φ }}.
Proof.
iIntros (??) "[#Hinv Hwp]".
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment