Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Abhishek Anand
Iris
Commits
02d1789b
Commit
02d1789b
authored
7 years ago
by
Jacques-Henri Jourdan
Browse files
Options
Downloads
Patches
Plain Diff
Add lemmas about relatively and absolutely.
parent
6c0eb97a
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/bi/monpred.v
+32
-0
32 additions, 0 deletions
theories/bi/monpred.v
with
32 additions
and
0 deletions
theories/bi/monpred.v
+
32
−
0
View file @
02d1789b
...
@@ -587,12 +587,23 @@ Proof.
...
@@ -587,12 +587,23 @@ Proof.
unseal
.
split
=>
i
/=.
by
apply
bi
.
forall_intro
=>_
.
unseal
.
split
=>
i
/=.
by
apply
bi
.
forall_intro
=>_
.
Qed
.
Qed
.
Lemma
monPred_absolutely_forall
{
A
}
(
Φ
:
A
→
monPred
)
:
∀
ᵢ
(
∀
x
,
Φ
x
)
⊣⊢
∀
x
,
∀
ᵢ
(
Φ
x
)
.
Proof
.
unseal
.
split
=>
i
.
apply
bi
.
equiv_spec
;
split
=>
/=
;
do
2
apply
bi
.
forall_intro
=>?;
by
do
2
rewrite
bi
.
forall_elim
.
Qed
.
Lemma
monPred_absolutely_and
P
Q
:
∀
ᵢ
(
P
∧
Q
)
⊣⊢
∀
ᵢ
P
∧
∀
ᵢ
Q
.
Lemma
monPred_absolutely_and
P
Q
:
∀
ᵢ
(
P
∧
Q
)
⊣⊢
∀
ᵢ
P
∧
∀
ᵢ
Q
.
Proof
.
Proof
.
unseal
.
split
=>
i
.
apply
bi
.
equiv_spec
;
split
=>
/=.
unseal
.
split
=>
i
.
apply
bi
.
equiv_spec
;
split
=>
/=.
-
apply
bi
.
and_intro
;
do
2
f_equiv
.
apply
bi
.
and_elim_l
.
apply
bi
.
and_elim_r
.
-
apply
bi
.
and_intro
;
do
2
f_equiv
.
apply
bi
.
and_elim_l
.
apply
bi
.
and_elim_r
.
-
apply
bi
.
forall_intro
=>?
.
by
rewrite
!
bi
.
forall_elim
.
-
apply
bi
.
forall_intro
=>?
.
by
rewrite
!
bi
.
forall_elim
.
Qed
.
Qed
.
Lemma
monPred_absolutely_exist
{
A
}
(
Φ
:
A
→
monPred
)
:
(
∃
x
,
∀
ᵢ
(
Φ
x
))
⊢
∀
ᵢ
(
∃
x
,
(
Φ
x
))
.
Proof
.
apply
bi
.
exist_elim
=>?
.
f_equiv
.
apply
bi
.
exist_intro
.
Qed
.
Lemma
monPred_absolutely_or
P
Q
:
(
∀
ᵢ
P
)
∨
(
∀
ᵢ
Q
)
⊢
∀
ᵢ
(
P
∨
Q
)
.
Proof
.
apply
bi
.
or_elim
;
f_equiv
.
apply
bi
.
or_intro_l
.
apply
bi
.
or_intro_r
.
Qed
.
Lemma
monPred_absolutely_sep_2
P
Q
:
∀
ᵢ
P
∗
∀
ᵢ
Q
⊢
∀
ᵢ
(
P
∗
Q
)
.
Lemma
monPred_absolutely_sep_2
P
Q
:
∀
ᵢ
P
∗
∀
ᵢ
Q
⊢
∀
ᵢ
(
P
∗
Q
)
.
Proof
.
unseal
.
split
=>
i
/=.
apply
bi
.
forall_intro
=>?
.
by
rewrite
!
bi
.
forall_elim
.
Qed
.
Proof
.
unseal
.
split
=>
i
/=.
apply
bi
.
forall_intro
=>?
.
by
rewrite
!
bi
.
forall_elim
.
Qed
.
Lemma
monPred_absolutely_sep
`{
BiIndexBottom
bot
}
P
Q
:
∀
ᵢ
(
P
∗
Q
)
⊣⊢
∀
ᵢ
P
∗
∀
ᵢ
Q
.
Lemma
monPred_absolutely_sep
`{
BiIndexBottom
bot
}
P
Q
:
∀
ᵢ
(
P
∗
Q
)
⊣⊢
∀
ᵢ
P
∗
∀
ᵢ
Q
.
...
@@ -608,6 +619,27 @@ Qed.
...
@@ -608,6 +619,27 @@ Qed.
Lemma
monPred_relatively_intro
P
:
P
⊢
∃
ᵢ
P
.
Lemma
monPred_relatively_intro
P
:
P
⊢
∃
ᵢ
P
.
Proof
.
unseal
.
split
=>?
.
apply
bi
.
exist_intro
.
Qed
.
Proof
.
unseal
.
split
=>?
.
apply
bi
.
exist_intro
.
Qed
.
Lemma
monPred_relatively_forall
{
A
}
(
Φ
:
A
→
monPred
)
:
(
∃
ᵢ
(
∀
x
,
Φ
x
))
⊢
∀
x
,
∃
ᵢ
(
Φ
x
)
.
Proof
.
apply
bi
.
forall_intro
=>?
.
f_equiv
.
apply
bi
.
forall_elim
.
Qed
.
Lemma
monPred_relatively_and
P
Q
:
∃
ᵢ
(
P
∧
Q
)
⊢
(
∃
ᵢ
P
)
∧
(
∃
ᵢ
Q
)
.
Proof
.
apply
bi
.
and_intro
;
f_equiv
.
apply
bi
.
and_elim_l
.
apply
bi
.
and_elim_r
.
Qed
.
Lemma
monPred_relatively_exist
{
A
}
(
Φ
:
A
→
monPred
)
:
∃
ᵢ
(
∃
x
,
Φ
x
)
⊣⊢
∃
x
,
∃
ᵢ
(
Φ
x
)
.
Proof
.
unseal
.
split
=>
i
.
apply
bi
.
equiv_spec
;
split
=>
/=
;
do
2
apply
bi
.
exist_elim
=>?;
by
do
2
rewrite
-
bi
.
exist_intro
.
Qed
.
Lemma
monPred_relatively_or
P
Q
:
∃
ᵢ
(
P
∨
Q
)
⊣⊢
∃
ᵢ
P
∨
∃
ᵢ
Q
.
Proof
.
unseal
.
split
=>
i
.
apply
bi
.
equiv_spec
;
split
=>
/=.
-
apply
bi
.
exist_elim
=>?
.
by
rewrite
-!
bi
.
exist_intro
.
-
apply
bi
.
or_elim
;
do
2
f_equiv
.
apply
bi
.
or_intro_l
.
apply
bi
.
or_intro_r
.
Qed
.
Lemma
monPred_relatively_sep
P
Q
:
∃
ᵢ
(
P
∗
Q
)
⊢
∃
ᵢ
P
∗
∃
ᵢ
Q
.
Proof
.
unseal
.
split
=>
i
/=.
apply
bi
.
exist_elim
=>?
.
by
rewrite
-!
bi
.
exist_intro
.
Qed
.
Lemma
monPred_relatively_idemp
P
:
∃
ᵢ
(
∃
ᵢ
P
)
⊣⊢
∃
ᵢ
P
.
Lemma
monPred_relatively_idemp
P
:
∃
ᵢ
(
∃
ᵢ
P
)
⊣⊢
∃
ᵢ
P
.
Proof
.
Proof
.
apply
bi
.
equiv_spec
;
split
;
[|
by
apply
monPred_relatively_intro
]
.
apply
bi
.
equiv_spec
;
split
;
[|
by
apply
monPred_relatively_intro
]
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment