Forked from
Iris / Iris
4697 commits behind the upstream repository.
-
Robbert Krebbers authoredRobbert Krebbers authored
na_invariants.v 4.28 KiB
From iris.base_logic.lib Require Export invariants.
From iris.algebra Require Export gmap gset coPset.
From iris.proofmode Require Import tactics.
Set Default Proof Using "Type".
Import uPred.
(* Non-atomic ("thread-local") invariants. *)
Definition na_inv_pool_name := gname.
Class na_invG Σ :=
na_inv_inG :> inG Σ (prodR coPset_disjR (gset_disjR positive)).
Definition na_invΣ : gFunctors :=
#[ GFunctor (constRF (prodR coPset_disjR (gset_disjR positive))) ].
Instance subG_na_invG {Σ} : subG na_invΣ Σ → na_invG Σ.
Proof. solve_inG. Qed.
Section defs.
Context `{invG Σ, na_invG Σ}.
Definition na_own (p : na_inv_pool_name) (E : coPset) : iProp Σ :=
own p (CoPset E, GSet ∅).
Definition na_inv (p : na_inv_pool_name) (N : namespace) (P : iProp Σ) : iProp Σ :=
(∃ i, ⌜i ∈ (↑N:coPset)⌝ ∧
inv N (P ∗ own p (CoPset ∅, GSet {[i]}) ∨ na_own p {[i]}))%I.
End defs.
Instance: Params (@na_inv) 3.
Typeclasses Opaque na_own na_inv.
Section proofs.
Context `{invG Σ, na_invG Σ}.
Global Instance na_own_timeless p E : Timeless (na_own p E).
Proof. rewrite /na_own; apply _. Qed.
Global Instance na_inv_ne p N : NonExpansive (na_inv p N).
Proof. rewrite /na_inv. solve_proper. Qed.
Global Instance na_inv_proper p N : Proper ((≡) ==> (≡)) (na_inv p N).
Proof. apply (ne_proper _). Qed.
Global Instance na_inv_persistent p N P : Persistent (na_inv p N P).
Proof. rewrite /na_inv; apply _. Qed.
Lemma na_inv_iff p N P Q : ▷ □ (P ↔ Q) -∗ na_inv p N P -∗ na_inv p N Q.
Proof.
iIntros "#HPQ". rewrite /na_inv. iDestruct 1 as (i ?) "#Hinv".
iExists i. iSplit; first done. iApply (inv_iff with "[] Hinv").
iNext. iAlways. iSplit; (iIntros "[[? Ho]|?]";
[iLeft; iFrame "Ho"; by iApply "HPQ"|by iRight]).
Qed.
Lemma na_alloc : (|==> ∃ p, na_own p ⊤)%I.
Proof. by apply own_alloc. Qed.
Lemma na_own_disjoint p E1 E2 : na_own p E1 -∗ na_own p E2 -∗ ⌜E1 ## E2⌝.
Proof.
apply wand_intro_r.
rewrite /na_own -own_op own_valid -coPset_disj_valid_op. by iIntros ([? _]).
Qed.
Lemma na_own_union p E1 E2 :
E1 ## E2 → na_own p (E1 ∪ E2) ⊣⊢ na_own p E1 ∗ na_own p E2.
Proof.
intros ?. by rewrite /na_own -own_op pair_op left_id coPset_disj_union.
Qed.
Lemma na_own_acc E2 E1 tid :
E2 ⊆ E1 → na_own tid E1 -∗ na_own tid E2 ∗ (na_own tid E2 -∗ na_own tid E1).
Proof.
intros HF. assert (E1 = E2 ∪ (E1 ∖ E2)) as -> by exact: union_difference_L.
rewrite na_own_union; last by set_solver+. iIntros "[$ $]". auto.
Qed.
Lemma na_inv_alloc p E N P : ▷ P ={E}=∗ na_inv p N P.
Proof.
iIntros "HP".
iMod (own_unit (prodUR coPset_disjUR (gset_disjUR positive)) p) as "Hempty".
iMod (own_updateP with "Hempty") as ([m1 m2]) "[Hm Hown]".
{ apply prod_updateP'. apply cmra_updateP_id, (reflexivity (R:=eq)).
apply (gset_disj_alloc_empty_updateP_strong' (λ i, i ∈ (↑N:coPset))).
intros Ef. exists (coPpick (↑ N ∖ coPset.of_gset Ef)).
rewrite -coPset.elem_of_of_gset comm -elem_of_difference.
apply coPpick_elem_of=> Hfin.
eapply nclose_infinite, (difference_finite_inv _ _), Hfin.
apply of_gset_finite. }
simpl. iDestruct "Hm" as %(<- & i & -> & ?).
rewrite /na_inv.
iMod (inv_alloc N with "[-]"); last (iModIntro; iExists i; eauto).
iNext. iLeft. by iFrame.
Qed.
Lemma na_inv_open p E F N P :
↑N ⊆ E → ↑N ⊆ F →
na_inv p N P -∗ na_own p F ={E}=∗ ▷ P ∗ na_own p (F∖↑N) ∗
(▷ P ∗ na_own p (F∖↑N) ={E}=∗ na_own p F).
Proof.
rewrite /na_inv. iIntros (??) "#Hnainv Htoks".
iDestruct "Hnainv" as (i) "[% Hinv]".
rewrite [F as X in na_own p X](union_difference_L (↑N) F) //.
rewrite [X in (X ∪ _)](union_difference_L {[i]} (↑N)) ?na_own_union; [|set_solver..].
iDestruct "Htoks" as "[[Htoki $] $]".
iInv N as "[[$ >Hdis]|>Htoki2]" "Hclose".
- iMod ("Hclose" with "[Htoki]") as "_"; first auto.
iIntros "!> [HP $]".
iInv N as "[[_ >Hdis2]|>Hitok]" "Hclose".
+ iDestruct (own_valid_2 with "Hdis Hdis2") as %[_ Hval%gset_disj_valid_op].
set_solver.
+ iFrame. iApply "Hclose". iNext. iLeft. by iFrame.
- iDestruct (na_own_disjoint with "Htoki Htoki2") as %?. set_solver.
Qed.
End proofs.