Skip to content
Snippets Groups Projects
Commit ff968a7f authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Test cases.

parent 3c30c5c8
No related branches found
No related tags found
No related merge requests found
......@@ -954,6 +954,16 @@ The command has indeed failed with message:
Tactic failure: sel_pat.parse: the term m
is expected to be a selection pattern (usually a string),
but has unexpected type nat.
"test_iIntros_let_fail"
: string
The command has indeed failed with message:
Tactic failure: iStartProof: goal is a `let`, use `simpl`,
`intros x`, `iIntros (x)`, or `iIntros "%x".
"test_iIntros_let_wand_fail"
: string
The command has indeed failed with message:
Tactic failure: iStartProof: goal is a `let`, use `simpl`,
`intros x`, `iIntros (x)`, or `iIntros "%x".
"test_pure_name"
: string
1 goal
......
......@@ -885,11 +885,46 @@ Proof.
iIntros (help) "HP".
iPoseProof (help with "[$HP]") as "?". done.
Qed.
Lemma test_iPoseProof_let_wand P Q :
(let R := True%I in R P Q)
P -∗ Q.
Proof.
iIntros (help) "HP".
iPoseProof (help with "[$HP]") as "?". done.
Qed.
Lemma test_iPoseProof_let_in_string P Q :
(let R := True%I in R P Q)
P Q.
Proof.
iIntros "%help HP".
iPoseProof (help with "[$HP]") as "?". done.
Qed.
Lemma test_iIntros_let P :
Q, let R := emp%I in P -∗ R -∗ Q -∗ P Q.
Proof. iIntros (Q R) "$ _ $". Qed.
Lemma test_iIntros_let_wand P :
Q, let R := emp%I in P R -∗ Q -∗ P Q.
Proof. iIntros (Q R) "$ _ $". Qed.
Lemma lemma_for_test_apply_below_let (Φ : nat PROP) :
let Q := Φ 5 in
Q Q.
Proof. iIntros (?) "?". done. Qed.
Lemma test_apply_below_let (Φ : nat PROP) :
Φ 5 -∗ Φ 5.
Proof. iIntros "?". iApply lemma_for_test_apply_below_let. done. Qed.
Lemma lemma_for_test_apply_wand_below_let (Φ : nat PROP) :
let Q := Φ 5 in
Q -∗ Q.
Proof. iIntros (?) "?". done. Qed.
Lemma test_apply_wand_below_let (Φ : nat PROP) :
Φ 5 -∗ Φ 5.
Proof. iIntros "?". iApply lemma_for_test_apply_wand_below_let. done. Qed.
Lemma test_iNext_iRewrite `{!BiInternalEq PROP} P Q :
<affine> (Q P) -∗ <affine> Q -∗ <affine> P.
Proof.
......@@ -1756,6 +1791,22 @@ Proof.
Fail iInduction n as [|n] "IH" forall m.
Abort.
Check "test_iIntros_let_fail".
Lemma test_iIntros_let_fail P :
let Q := (P P)%I in
Q Q.
Proof.
Fail iIntros "Q".
Abort.
Check "test_iIntros_let_wand_fail".
Lemma test_iIntros_let_wand_fail P :
let Q := (P P)%I in
Q Q.
Proof.
Fail iIntros "Q".
Abort.
End error_tests.
Section pure_name_tests.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment