Skip to content
Snippets Groups Projects
Commit f7afee85 authored by Joseph Tassarotti's avatar Joseph Tassarotti
Browse files

Reorganize double negation equivalence proof; direct proof of transitivity

parent 10517549
No related branches found
No related tags found
No related merge requests found
...@@ -27,7 +27,7 @@ Notation "P =n=★ Q" := (P -★ |=n=> Q)%I ...@@ -27,7 +27,7 @@ Notation "P =n=★ Q" := (P -★ |=n=> Q)%I
(2) If our meta-logic is classical, then |=n=> and |=r=> are equivalent (2) If our meta-logic is classical, then |=n=> and |=r=> are equivalent
*) *)
Section rvs_nn. Section rvs_nnvs.
Context {M : ucmraT}. Context {M : ucmraT}.
Implicit Types φ : Prop. Implicit Types φ : Prop.
Implicit Types P Q : uPred M. Implicit Types P Q : uPred M.
...@@ -58,66 +58,237 @@ Proof. ...@@ -58,66 +58,237 @@ Proof.
eapply (uPred_closed _ _ (S n)); eauto using cmra_validN_S. eapply (uPred_closed _ _ (S n)); eauto using cmra_validN_S.
Qed. Qed.
(* First we prove that rvs implies nn *) (* It is easy to show that most of the basic properties of rvs that
Lemma rvs_nn P: (|=r=> P) |=n=> P. are used throughout Iris hold for nnvs.
Proof.
split. rewrite /uPred_nnvs. repeat uPred.unseal. intros n x ? Hrvs a. In fact, the first three properties that follow hold for any
red; rewrite //= => n' yf ??. modality of the form (- -★ Q) -★ Q for arbitrary Q. The situation
edestruct Hrvs as (x'&?&?); eauto. here is slightly different, because nnvs is of the form
case (decide (a n')). ∀ n, (- -★ (Q n)) -★ (Q n), but the proofs carry over straightforwardly.
- intros Hle Hwand.
exfalso. eapply laterN_big; last (uPred.unseal; eapply (Hwand n' x')); eauto. *)
* rewrite comm. done.
* rewrite comm. done.
- intros; assert (n' < a). omega.
move: laterN_small. uPred.unseal.
naive_solver.
Qed.
Lemma nn_intro P : P =n=> P. Lemma nnvs_intro P : P =n=> P.
Proof. apply forall_intro=>?. apply wand_intro_l, wand_elim_l. Qed. Proof. apply forall_intro=>?. apply wand_intro_l, wand_elim_l. Qed.
Lemma nn_mono P Q : (P Q) (|=n=> P) =n=> Q. Lemma nnvs_mono P Q : (P Q) (|=n=> P) =n=> Q.
Proof. Proof.
intros HPQ. apply forall_intro=>n. intros HPQ. apply forall_intro=>n.
apply wand_intro_l. rewrite -{1}HPQ. apply wand_intro_l. rewrite -{1}HPQ.
rewrite /uPred_nnvs (forall_elim n). rewrite /uPred_nnvs (forall_elim n).
apply wand_elim_r. apply wand_elim_r.
Qed. Qed.
(* Question: is there a clean direct proof of this? *) Lemma nnvs_frame_r P R : (|=n=> P) R =n=> P R.
(*
Lemma nn_trans P : (|=n=> |=n=> P) =n=> P.
Proof.
apply forall_intro=>n. apply wand_intro_l.
rewrite /uPred_nnvs.
rewrite {1}(nn_intro (P -★ ▷^ n False)).
rewrite /uPred_nnvs. rewrite comm (forall_elim n).
apply wand_elim_r. Qed.
*)
Lemma nn_frame_r P R : (|=n=> P) R =n=> P R.
Proof. Proof.
apply forall_intro=>n. apply wand_intro_r. apply forall_intro=>n. apply wand_intro_r.
rewrite (comm _ P) -wand_curry. rewrite (comm _ P) -wand_curry.
rewrite /uPred_nnvs (forall_elim n). rewrite /uPred_nnvs (forall_elim n).
by rewrite -assoc wand_elim_r wand_elim_l. by rewrite -assoc wand_elim_r wand_elim_l.
Qed. Qed.
Lemma nn_ownM_updateP x (Φ : M Prop) : Lemma nnvs_ownM_updateP x (Φ : M Prop) :
x ~~>: Φ uPred_ownM x =n=> y, Φ y uPred_ownM y. x ~~>: Φ uPred_ownM x =n=> y, Φ y uPred_ownM y.
Proof. intros. rewrite -rvs_nn. by apply rvs_ownM_updateP. Qed. Proof.
Lemma except_last_nn P : (|=n=> P) (|=n=> P). intros Hrvs. split. rewrite /uPred_nnvs. repeat uPred.unseal.
intros n y ? Hown a.
red; rewrite //= => n' yf ??.
inversion Hown as (x'&Hequiv).
edestruct (Hrvs n' (Some (x' yf))) as (y'&?&?); eauto.
{ by rewrite //= assoc -(dist_le _ _ _ _ Hequiv). }
case (decide (a n')).
- intros Hle Hwand.
exfalso. eapply laterN_big; last (uPred.unseal; eapply (Hwand n' (y' x'))); eauto.
* rewrite comm -assoc. done.
* rewrite comm -assoc. done.
* eexists. split; eapply uPred_mono; red; rewrite //=; eauto.
- intros; assert (n' < a). omega.
move: laterN_small. uPred.unseal.
naive_solver.
Qed.
(* However, the transitivity property seems to be much harder to
prove. This is surprising, because transitivity does hold for
modalities of the form (- -★ Q) -★ Q. What goes wrong when we quantify
now over n?
*)
Remark nnvs_trans P: (|=n=> |=n=> P) (|=n=> P).
Proof.
rewrite /uPred_nnvs.
apply forall_intro=>a. apply wand_intro_l.
rewrite (forall_elim a).
rewrite (nnvs_intro (P -★ _)).
rewrite /uPred_nnvs.
(* Oops -- the exponents of the later modality don't match up! *)
Abort.
(* Instead, we will need to prove this in the model. We start by showing that
nnvs is the limit of a the following sequence:
(- -★ False) - ★ False,
(- -★ ▷ False) - ★ ▷ False ∧ (- -★ False) - ★ False,
(- -★ ▷^2 False) - ★ ▷^2 False ∧ (- -★ ▷ False) - ★ ▷ False ∧ (- -★ False) - ★ False,
...
Then, it is easy enough to show that each of the uPreds in this sequence
is transitive. It turns out that this implies that nnvs is transitive. *)
(* The definition of the sequence above: *)
Fixpoint uPred_nnvs_k {M} k (P: uPred M) : uPred M :=
((P -★ ▷^k False) -★ ▷^k False)
match k with
O => True
| S k' => uPred_nnvs_k k' P
end.
Notation "|=n=>_ k Q" := (uPred_nnvs_k k Q)
(at level 99, k at level 9, Q at level 200, format "|=n=>_ k Q") : uPred_scope.
(* One direction of the limiting process is easy -- nnvs implies nnvs_k for each k *)
Lemma nnvs_trunc1 k P: (|=n=> P) |=n=>_k P.
Proof. Proof.
rewrite /uPred_except_last. apply or_elim. induction k.
- by rewrite -nn_intro -or_intro_l. - rewrite /uPred_nnvs_k /uPred_nnvs.
- by apply nn_mono, or_intro_r. rewrite (forall_elim 0) //= right_id //.
- simpl. apply and_intro; auto.
rewrite /uPred_nnvs.
rewrite (forall_elim (S k)) //=.
Qed. Qed.
(* Now we show, nn implies rvs, for which we need a classical axiom: *) Lemma nnvs_k_elim n k P: n k ((|=n=>_k P) (P -★ (▷^n False)) (▷^n False))%I.
Require Coq.Logic.Classical_Pred_Type. Proof.
Lemma nn_rvs P: (|=n=> P) (|=r=> P). induction k.
- inversion 1; subst; rewrite //= ?right_id. apply wand_elim_l.
- inversion 1; subst; rewrite //= ?right_id.
* rewrite and_elim_l. apply wand_elim_l.
* rewrite and_elim_r IHk //.
Qed.
Lemma nnvs_k_unfold k P:
(|=n=>_(S k) P) ⊣⊢ ((P -★ (▷^(S k) False)) -★ (▷^(S k) False)) (|=n=>_k P).
Proof. done. Qed.
Lemma nnvs_k_unfold' k P n x:
(|=n=>_(S k) P)%I n x (((P -★ (▷^(S k) False)) -★ (▷^(S k) False)) (|=n=>_k P))%I n x.
Proof. done. Qed.
Lemma nnvs_k_weaken k P: (|=n=>_(S k) P) |=n=>_k P.
Proof. by rewrite nnvs_k_unfold and_elim_r. Qed.
(* Now we are ready to show nnvs is the limit -- ie, for each k, it is within distance k
of the kth term of the sequence *)
Lemma nnvs_nnvs_k_dist k P: (|=n=> P)%I {k} (|=n=>_k P)%I.
split; intros n' x Hle Hx. split.
- by apply (nnvs_trunc1 k).
- revert n' x Hle Hx; induction k; intros n' x Hle Hx;
rewrite ?nnvs_k_unfold' /uPred_nnvs.
* rewrite //=. unseal.
inversion Hle; subst.
intros (HnnP&_) n k' x' ?? HPF.
case (decide (k' < n)).
** move: laterN_small; uPred.unseal; naive_solver.
** intros. exfalso. eapply HnnP; eauto.
assert (n k'). omega.
intros n'' x'' ???.
specialize (HPF n'' x''). exfalso.
eapply laterN_big; last (unseal; eauto).
eauto. omega.
* inversion Hle; subst.
** unseal. intros (HnnP&HnnP_IH) n k' x' ?? HPF.
case (decide (k' < n)).
*** move: laterN_small; uPred.unseal; naive_solver.
*** intros. exfalso. assert (n k'). omega.
assert (n = S k n < S k) as [->|] by omega.
**** eapply laterN_big; eauto; unseal. eapply HnnP; eauto.
**** move:nnvs_k_elim. unseal. intros Hnnvsk.
eapply laterN_big; eauto. unseal.
eapply (Hnnvsk n k); first omega; eauto.
exists x, x'. split_and!; eauto. eapply uPred_closed; eauto.
eapply cmra_validN_op_l; eauto.
** intros HP. eapply IHk; auto.
move:HP. unseal. intros (?&?); naive_solver.
Qed.
(* nnvs_k has a number of structural properties, including transitivity *)
Lemma nnvs_k_intro k P: P (|=n=>_k P).
Proof.
induction k; rewrite //= ?right_id.
- apply wand_intro_l. apply wand_elim_l.
- apply and_intro; auto.
apply wand_intro_l. apply wand_elim_l.
Qed.
Lemma nnvs_k_mono k P Q: (P Q) (|=n=>_k P) (|=n=>_k Q).
Proof.
induction k; rewrite //= ?right_id=>HPQ.
- do 2 (apply wand_mono; auto).
- apply and_mono; auto; do 2 (apply wand_mono; auto).
Qed.
Instance nnvs_k_mono' k: Proper (() ==> ()) (@uPred_nnvs_k M k).
Proof. by intros P P' HP; apply nnvs_k_mono. Qed.
Instance nnvs_k_ne k n : Proper (dist n ==> dist n) (@uPred_nnvs_k M k).
Proof. induction k; rewrite //= ?right_id=>P P' HP; by rewrite HP. Qed.
Lemma nnvs_k_proper k P Q: (P ⊣⊢ Q) (|=n=>_k P) ⊣⊢ (|=n=>_k Q).
Proof. intros HP; apply (anti_symm ()); eapply nnvs_k_mono; by rewrite HP. Qed.
Instance nnvs_k_proper' k: Proper ((⊣⊢) ==> (⊣⊢)) (@uPred_nnvs_k M k).
Proof. by intros P P' HP; apply nnvs_k_proper. Qed.
Lemma nnvs_k_trans k P: (|=n=>_k |=n=>_k P) (|=n=>_k P).
Proof.
revert P.
induction k; intros P.
- rewrite //= ?right_id. apply wand_intro_l.
rewrite {1}(nnvs_k_intro 0 (P -★ False)%I) //= ?right_id. apply wand_elim_r.
- rewrite {2}(nnvs_k_unfold k P).
apply and_intro.
* rewrite (nnvs_k_unfold k P). rewrite and_elim_l.
rewrite nnvs_k_unfold. rewrite and_elim_l.
apply wand_intro_l.
rewrite {1}(nnvs_k_intro (S k) (P -★ ▷^(S k) (False)%I)).
rewrite nnvs_k_unfold and_elim_l. apply wand_elim_r.
* do 2 rewrite nnvs_k_weaken //.
Qed.
Lemma nnvs_trans P : (|=n=> |=n=> P) =n=> P.
Proof.
split=> n x ? Hnn.
eapply nnvs_nnvs_k_dist in Hnn; eauto.
eapply (nnvs_k_ne (n) n ((|=n=>_(n) P)%I)) in Hnn; eauto;
[| symmetry; eapply nnvs_nnvs_k_dist].
eapply nnvs_nnvs_k_dist; eauto.
by apply nnvs_k_trans.
Qed.
(* Now that we have shown nnvs has all of the desired properties of
rvs, we go further and show it is in fact equivalent to rvs! The
direction from rvs to nnvs is similar to the proof of
nnvs_ownM_updateP *)
Lemma rvs_nnvs P: (|=r=> P) |=n=> P.
Proof.
split. rewrite /uPred_nnvs. repeat uPred.unseal. intros n x ? Hrvs a.
red; rewrite //= => n' yf ??.
edestruct Hrvs as (x'&?&?); eauto.
case (decide (a n')).
- intros Hle Hwand.
exfalso. eapply laterN_big; last (uPred.unseal; eapply (Hwand n' x')); eauto.
* rewrite comm. done.
* rewrite comm. done.
- intros; assert (n' < a). omega.
move: laterN_small. uPred.unseal.
naive_solver.
Qed.
(* However, the other direction seems to need a classical axiom: *)
Section classical.
Context (not_all_not_ex: (P : M Prop), ¬ ( n : M, ¬ P n) n : M, P n).
Lemma nnvs_rvs P: (|=n=> P) (|=r=> P).
Proof. Proof.
rewrite /uPred_nnvs. rewrite /uPred_nnvs.
split. uPred.unseal; red; rewrite //=. split. uPred.unseal; red; rewrite //=.
intros n x ? Hforall k yf Hle ?. intros n x ? Hforall k yf Hle ?.
apply Classical_Pred_Type.not_all_not_ex. apply not_all_not_ex.
intros Hfal. intros Hfal.
specialize (Hforall k k). specialize (Hforall k k).
eapply laterN_big; last (uPred.unseal; red; rewrite //=; eapply Hforall); eapply laterN_big; last (uPred.unseal; red; rewrite //=; eapply Hforall);
...@@ -128,6 +299,7 @@ Proof. ...@@ -128,6 +299,7 @@ Proof.
- assert (n' < k). omega. - assert (n' < k). omega.
move: laterN_small. uPred.unseal. naive_solver. move: laterN_small. uPred.unseal. naive_solver.
Qed. Qed.
End classical.
(* Questions: (* Questions:
1) Can one prove an adequacy theorem for the |=n=> modality without axioms? 1) Can one prove an adequacy theorem for the |=n=> modality without axioms?
...@@ -135,7 +307,11 @@ Qed. ...@@ -135,7 +307,11 @@ Qed.
Lemma adequacy' φ n : (True ⊢ Nat.iter n (λ P, |=n=> ▷ P) (■ φ)) → ¬¬ φ. Lemma adequacy' φ n : (True ⊢ Nat.iter n (λ P, |=n=> ▷ P) (■ φ)) → ¬¬ φ.
One idea may be to prove a limited adequacy theorem for each
nnvs_k and use the limiting argument we did for transitivity.
3) Do the basic properties of the |=r=> modality (rvs_intro, rvs_mono, rvs_trans, rvs_frame_r, 3) Do the basic properties of the |=r=> modality (rvs_intro, rvs_mono, rvs_trans, rvs_frame_r,
rvs_ownM_updateP, and adequacy) characterize |=r=>? rvs_ownM_updateP, and adequacy) uniquely characterize |=r=>?
*) *)
End rvs_nn.
\ No newline at end of file End rvs_nnvs.
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment