Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Gaëtan Gilbert
Iris
Commits
e875cb29
Commit
e875cb29
authored
7 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Get rid of `later_proper'`, see discussion in !81.
parent
9539a84c
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/base_logic/derived.v
+8
-10
8 additions, 10 deletions
theories/base_logic/derived.v
with
8 additions
and
10 deletions
theories/base_logic/derived.v
+
8
−
10
View file @
e875cb29
...
...
@@ -672,9 +672,7 @@ Proof.
Qed
.
(* Later derived *)
Lemma
later_proper'
P
Q
:
(
P
⊣⊢
Q
)
→
▷
P
⊣⊢
▷
Q
.
Proof
.
by
intros
->
.
Qed
.
Hint
Resolve
later_mono
later_proper'
.
Hint
Resolve
later_mono
.
Global
Instance
later_mono'
:
Proper
((
⊢
)
==>
(
⊢
))
(
@
uPred_later
M
)
.
Proof
.
intros
P
Q
;
apply
later_mono
.
Qed
.
Global
Instance
later_flip_mono'
:
...
...
@@ -725,9 +723,9 @@ Proof. done. Qed.
Lemma
later_laterN
n
P
:
▷^
(
S
n
)
P
⊣⊢
▷
▷^
n
P
.
Proof
.
done
.
Qed
.
Lemma
laterN_later
n
P
:
▷^
(
S
n
)
P
⊣⊢
▷^
n
▷
P
.
Proof
.
induction
n
;
simpl
;
auto
.
Qed
.
Proof
.
induction
n
;
f_equiv
/=
;
auto
.
Qed
.
Lemma
laterN_plus
n1
n2
P
:
▷^
(
n1
+
n2
)
P
⊣⊢
▷^
n1
▷^
n2
P
.
Proof
.
induction
n1
;
simpl
;
auto
.
Qed
.
Proof
.
induction
n1
;
f_equiv
/=
;
auto
.
Qed
.
Lemma
laterN_le
n1
n2
P
:
n1
≤
n2
→
▷^
n1
P
⊢
▷^
n2
P
.
Proof
.
induction
1
;
simpl
;
by
rewrite
-
?later_intro
.
Qed
.
...
...
@@ -745,22 +743,22 @@ Proof. induction n as [|n IH]; simpl; by rewrite -?later_intro. Qed.
Lemma
laterN_True
n
:
▷^
n
True
⊣⊢
True
.
Proof
.
apply
(
anti_symm
(
⊢
));
auto
using
laterN_intro
.
Qed
.
Lemma
laterN_forall
{
A
}
n
(
Φ
:
A
→
uPred
M
)
:
(
▷^
n
∀
a
,
Φ
a
)
⊣⊢
(
∀
a
,
▷^
n
Φ
a
)
.
Proof
.
induction
n
as
[|
n
IH
];
simpl
;
rewrite
-
?later_forall
;
auto
.
Qed
.
Proof
.
induction
n
as
[|
n
IH
];
simpl
;
rewrite
-
?later_forall
?IH
;
auto
.
Qed
.
Lemma
laterN_exist_2
{
A
}
n
(
Φ
:
A
→
uPred
M
)
:
(
∃
a
,
▷^
n
Φ
a
)
⊢
▷^
n
(
∃
a
,
Φ
a
)
.
Proof
.
apply
exist_elim
;
eauto
using
exist_intro
,
laterN_mono
.
Qed
.
Lemma
laterN_exist
`{
Inhabited
A
}
n
(
Φ
:
A
→
uPred
M
)
:
(
▷^
n
∃
a
,
Φ
a
)
⊣⊢
∃
a
,
▷^
n
Φ
a
.
Proof
.
induction
n
as
[|
n
IH
];
simpl
;
rewrite
-
?later_exist
;
auto
.
Qed
.
Proof
.
induction
n
as
[|
n
IH
];
simpl
;
rewrite
-
?later_exist
?IH
;
auto
.
Qed
.
Lemma
laterN_and
n
P
Q
:
▷^
n
(
P
∧
Q
)
⊣⊢
▷^
n
P
∧
▷^
n
Q
.
Proof
.
induction
n
as
[|
n
IH
];
simpl
;
rewrite
-
?later_and
;
auto
.
Qed
.
Proof
.
induction
n
as
[|
n
IH
];
simpl
;
rewrite
-
?later_and
?IH
;
auto
.
Qed
.
Lemma
laterN_or
n
P
Q
:
▷^
n
(
P
∨
Q
)
⊣⊢
▷^
n
P
∨
▷^
n
Q
.
Proof
.
induction
n
as
[|
n
IH
];
simpl
;
rewrite
-
?later_or
;
auto
.
Qed
.
Proof
.
induction
n
as
[|
n
IH
];
simpl
;
rewrite
-
?later_or
?IH
;
auto
.
Qed
.
Lemma
laterN_impl
n
P
Q
:
▷^
n
(
P
→
Q
)
⊢
▷^
n
P
→
▷^
n
Q
.
Proof
.
apply
impl_intro_l
;
rewrite
-
laterN_and
;
eauto
using
impl_elim
,
laterN_mono
.
Qed
.
Lemma
laterN_sep
n
P
Q
:
▷^
n
(
P
∗
Q
)
⊣⊢
▷^
n
P
∗
▷^
n
Q
.
Proof
.
induction
n
as
[|
n
IH
];
simpl
;
rewrite
-
?later_sep
;
auto
.
Qed
.
Proof
.
induction
n
as
[|
n
IH
];
simpl
;
rewrite
-
?later_sep
?IH
;
auto
.
Qed
.
Lemma
laterN_wand
n
P
Q
:
▷^
n
(
P
-∗
Q
)
⊢
▷^
n
P
-∗
▷^
n
Q
.
Proof
.
apply
wand_intro_r
;
rewrite
-
laterN_sep
;
eauto
using
wand_elim_l
,
laterN_mono
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment