Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Gaëtan Gilbert
Iris
Commits
e8549c1a
Commit
e8549c1a
authored
1 year ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Improve comments, drop bogus counterexample.
parent
c8343385
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
iris_unstable/algebra/monotone.v
+6
-31
6 additions, 31 deletions
iris_unstable/algebra/monotone.v
with
6 additions
and
31 deletions
iris_unstable/algebra/monotone.v
+
6
−
31
View file @
e8549c1a
...
@@ -31,42 +31,16 @@ It is not clear what axioms to impose on [R] for the "extension axiom" to hold:
...
@@ -31,42 +31,16 @@ It is not clear what axioms to impose on [R] for the "extension axiom" to hold:
x ≡{n}≡ y1 ⋅ y2 →
x ≡{n}≡ y1 ⋅ y2 →
∃ z1 z2, x ≡ z1 ⋅ z2 ∧ y1 ≡{n}≡ z1 ∧ y2 ≡{n}≡ z2
∃ z1 z2, x ≡ z1 ⋅ z2 ∧ y1 ≡{n}≡ z1 ∧ y2 ≡{n}≡ z2
To prove this, assume
To prove this, assume
([⋅] is defined as [++], see [mra_op]):
x ≡{n}≡ y1 ++ y2
x ≡{n}≡ y1 ++ y2
That
means:
When defining [dist] as the step-indexed version of [mra_equiv], this
means:
∀ n' a, n' ≤ n →
∀ n' a, n' ≤ n →
mra_below a x n' ↔ mra_below a y1 n' ∨ mra_below a y2 n')
mra_below a x n' ↔ mra_below a y1 n' ∨ mra_below a y2 n'
From this assumption we cannot construct a [z1] and [z2].
Here is a counterexample that shows the extension axiom is false without
imposing any restrictions on the preorder [R]:
R a b := (a ≡ b) ∨ (▷ False ∧ a ≡ a1 ∧ b ≡ a2) ∨ (▷ False ∧ a ≡ a1 ∧ b ≡ a3)
Visually:
R @ 0 R @ n for n > 0
a1 a1
/ \
/ \
a2 a3 a2 a3
We have:
[a1] ≡{0}≡ [a2] ++ [a3]
Any [a] is below [a1] iff it is below [a2;a3]. The only [a] for which that is
possible is [a1]. We do not have:
[a1] ≡{1}≡ [a2] ++ [a3]
We have that [a1] is below [a1], but [a1] is not below [a2;a3]. *)
From this assumption it is not clear how to obtain witnesses [z1] and [z2]. *)
Record
mra
{
A
}
(
R
:
relation
A
)
:=
{
mra_car
:
list
A
}
.
Record
mra
{
A
}
(
R
:
relation
A
)
:=
{
mra_car
:
list
A
}
.
Definition
to_mra
{
A
}
{
R
:
relation
A
}
(
a
:
A
)
:
mra
R
:=
Definition
to_mra
{
A
}
{
R
:
relation
A
}
(
a
:
A
)
:
mra
R
:=
{|
mra_car
:=
[
a
]
|}
.
{|
mra_car
:=
[
a
]
|}
.
...
@@ -77,6 +51,7 @@ Section mra.
...
@@ -77,6 +51,7 @@ Section mra.
Implicit
Types
a
b
:
A
.
Implicit
Types
a
b
:
A
.
Implicit
Types
x
y
:
mra
R
.
Implicit
Types
x
y
:
mra
R
.
(** Pronounced [a] is below [x]. *)
Local
Definition
mra_below
(
a
:
A
)
(
x
:
mra
R
)
:=
∃
b
,
b
∈
mra_car
x
∧
R
a
b
.
Local
Definition
mra_below
(
a
:
A
)
(
x
:
mra
R
)
:=
∃
b
,
b
∈
mra_car
x
∧
R
a
b
.
Local
Lemma
mra_below_to_mra
a
b
:
mra_below
a
(
to_mra
b
)
↔
R
a
b
.
Local
Lemma
mra_below_to_mra
a
b
:
mra_below
a
(
to_mra
b
)
↔
R
a
b
.
...
@@ -198,7 +173,7 @@ End mra_over_rel.
...
@@ -198,7 +173,7 @@ End mra_over_rel.
Global
Instance
to_mra_inj
{
A
}
{
R
:
relation
A
}
:
Global
Instance
to_mra_inj
{
A
}
{
R
:
relation
A
}
:
Reflexive
R
→
Reflexive
R
→
AntiSymm
(
=
)
R
→
AntiSymm
(
=
)
R
→
Inj
(
=
)
(
≡@
{
mra
R
})
(
to_mra
)
|
0
.
(* Lower cost than [to_mra_inj] *)
Inj
(
=
)
(
≡@
{
mra
R
})
(
to_mra
)
|
0
.
(* Lower cost than [to_mra_
equiv_
inj] *)
Proof
.
intros
.
by
apply
(
to_mra_rel_inj
(
=
))
.
Qed
.
Proof
.
intros
.
by
apply
(
to_mra_rel_inj
(
=
))
.
Qed
.
Global
Instance
to_mra_proper
`{
Equiv
A
}
{
R
:
relation
A
}
:
Global
Instance
to_mra_proper
`{
Equiv
A
}
{
R
:
relation
A
}
:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment