Skip to content
Snippets Groups Projects
Commit e2ece00a authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Use `IsCons` and `IsApp` more consistently.

parent a3a4c80f
No related branches found
No related tags found
No related merge requests found
...@@ -536,15 +536,17 @@ Global Instance from_and_embed `{BiEmbed PROP PROP'} P Q1 Q2 : ...@@ -536,15 +536,17 @@ Global Instance from_and_embed `{BiEmbed PROP PROP'} P Q1 Q2 :
FromAnd P Q1 Q2 FromAnd P Q1 Q2⎤. FromAnd P Q1 Q2 FromAnd P Q1 Q2⎤.
Proof. by rewrite /FromAnd -embed_and => <-. Qed. Proof. by rewrite /FromAnd -embed_and => <-. Qed.
Global Instance from_and_big_sepL_cons_persistent {A} (Φ : nat A PROP) x l : Global Instance from_and_big_sepL_cons_persistent {A} (Φ : nat A PROP) l x l' :
IsCons l x l'
Persistent (Φ 0 x) Persistent (Φ 0 x)
FromAnd ([ list] k y x :: l, Φ k y) (Φ 0 x) ([ list] k y l, Φ (S k) y). FromAnd ([ list] k y l, Φ k y) (Φ 0 x) ([ list] k y l', Φ (S k) y).
Proof. intros. by rewrite /FromAnd big_opL_cons persistent_and_sep_1. Qed. Proof. rewrite /IsCons=> -> ?. by rewrite /FromAnd big_sepL_cons persistent_and_sep_1. Qed.
Global Instance from_and_big_sepL_app_persistent {A} (Φ : nat A PROP) l1 l2 : Global Instance from_and_big_sepL_app_persistent {A} (Φ : nat A PROP) l l1 l2 :
IsApp l l1 l2
( k y, Persistent (Φ k y)) ( k y, Persistent (Φ k y))
FromAnd ([ list] k y l1 ++ l2, Φ k y) FromAnd ([ list] k y l, Φ k y)
([ list] k y l1, Φ k y) ([ list] k y l2, Φ (length l1 + k) y). ([ list] k y l1, Φ k y) ([ list] k y l2, Φ (length l1 + k) y).
Proof. intros. by rewrite /FromAnd big_opL_app persistent_and_sep_1. Qed. Proof. rewrite /IsApp=> -> ?. by rewrite /FromAnd big_sepL_app persistent_and_sep_1. Qed.
(** FromSep *) (** FromSep *)
Global Instance from_sep_sep P1 P2 : FromSep (P1 P2) P1 P2 | 100. Global Instance from_sep_sep P1 P2 : FromSep (P1 P2) P1 P2 | 100.
...@@ -575,13 +577,15 @@ Global Instance from_sep_embed `{BiEmbed PROP PROP'} P Q1 Q2 : ...@@ -575,13 +577,15 @@ Global Instance from_sep_embed `{BiEmbed PROP PROP'} P Q1 Q2 :
FromSep P Q1 Q2 FromSep P Q1 Q2⎤. FromSep P Q1 Q2 FromSep P Q1 Q2⎤.
Proof. by rewrite /FromSep -embed_sep => <-. Qed. Proof. by rewrite /FromSep -embed_sep => <-. Qed.
Global Instance from_sep_big_sepL_cons {A} (Φ : nat A PROP) x l : Global Instance from_sep_big_sepL_cons {A} (Φ : nat A PROP) l x l' :
FromSep ([ list] k y x :: l, Φ k y) (Φ 0 x) ([ list] k y l, Φ (S k) y). IsCons l x l'
Proof. by rewrite /FromSep big_sepL_cons. Qed. FromSep ([ list] k y l, Φ k y) (Φ 0 x) ([ list] k y l', Φ (S k) y).
Global Instance from_sep_big_sepL_app {A} (Φ : nat A PROP) l1 l2 : Proof. rewrite /IsCons=> ->. by rewrite /FromSep big_sepL_cons. Qed.
FromSep ([ list] k y l1 ++ l2, Φ k y) Global Instance from_sep_big_sepL_app {A} (Φ : nat A PROP) l l1 l2 :
IsApp l l1 l2
FromSep ([ list] k y l, Φ k y)
([ list] k y l1, Φ k y) ([ list] k y l2, Φ (length l1 + k) y). ([ list] k y l1, Φ k y) ([ list] k y l2, Φ (length l1 + k) y).
Proof. by rewrite /FromSep big_opL_app. Qed. Proof. rewrite /IsApp=> ->. by rewrite /FromSep big_opL_app. Qed.
Global Instance from_sep_bupd `{BiBUpd PROP} P Q1 Q2 : Global Instance from_sep_bupd `{BiBUpd PROP} P Q1 Q2 :
FromSep P Q1 Q2 FromSep (|==> P) (|==> Q1) (|==> Q2). FromSep P Q1 Q2 FromSep (|==> P) (|==> Q1) (|==> Q2).
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment