Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Gaëtan Gilbert
Iris
Commits
dbfcb32f
Commit
dbfcb32f
authored
2 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
less confusing line breaks
parent
26de02a9
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
iris/algebra/ofe.v
+6
-3
6 additions, 3 deletions
iris/algebra/ofe.v
with
6 additions
and
3 deletions
iris/algebra/ofe.v
+
6
−
3
View file @
dbfcb32f
...
@@ -290,7 +290,8 @@ Section limit_preserving.
...
@@ -290,7 +290,8 @@ Section limit_preserving.
Proof
.
intros
PH
c
Hc
.
by
rewrite
(
conv_compl
0
)
.
Qed
.
Proof
.
intros
PH
c
Hc
.
by
rewrite
(
conv_compl
0
)
.
Qed
.
Lemma
limit_preserving_and
(
P1
P2
:
A
→
Prop
)
:
Lemma
limit_preserving_and
(
P1
P2
:
A
→
Prop
)
:
LimitPreserving
P1
→
LimitPreserving
P2
→
LimitPreserving
P1
→
LimitPreserving
P2
→
LimitPreserving
(
λ
x
,
P1
x
∧
P2
x
)
.
LimitPreserving
(
λ
x
,
P1
x
∧
P2
x
)
.
Proof
.
Proof
.
intros
Hlim1
Hlim2
c
Hc
.
intros
Hlim1
Hlim2
c
Hc
.
...
@@ -300,7 +301,8 @@ Section limit_preserving.
...
@@ -300,7 +301,8 @@ Section limit_preserving.
Qed
.
Qed
.
Lemma
limit_preserving_impl
(
P1
P2
:
A
→
Prop
)
:
Lemma
limit_preserving_impl
(
P1
P2
:
A
→
Prop
)
:
Proper
(
dist
0
==>
impl
)
P1
→
LimitPreserving
P2
→
Proper
(
dist
0
==>
impl
)
P1
→
LimitPreserving
P2
→
LimitPreserving
(
λ
x
,
P1
x
→
P2
x
)
.
LimitPreserving
(
λ
x
,
P1
x
→
P2
x
)
.
Proof
.
Proof
.
intros
Hlim1
Hlim2
c
Hc
HP1
.
apply
Hlim2
=>
n
;
apply
Hc
.
intros
Hlim1
Hlim2
c
Hc
HP1
.
apply
Hlim2
=>
n
;
apply
Hc
.
...
@@ -310,7 +312,8 @@ Section limit_preserving.
...
@@ -310,7 +312,8 @@ Section limit_preserving.
(** This is strictly weaker than the [_impl] variant, but sometimes automation
(** This is strictly weaker than the [_impl] variant, but sometimes automation
is better at proving [Proper] for [iff] than for [impl]. *)
is better at proving [Proper] for [iff] than for [impl]. *)
Lemma
limit_preserving_iff
(
P1
P2
:
A
→
Prop
)
:
Lemma
limit_preserving_iff
(
P1
P2
:
A
→
Prop
)
:
Proper
(
dist
0
==>
iff
)
P1
→
LimitPreserving
P2
→
Proper
(
dist
0
==>
iff
)
P1
→
LimitPreserving
P2
→
LimitPreserving
(
λ
x
,
P1
x
→
P2
x
)
.
LimitPreserving
(
λ
x
,
P1
x
→
P2
x
)
.
Proof
.
Proof
.
intros
HP1
.
apply
limit_preserving_impl
.
intros
???
.
intros
HP1
.
apply
limit_preserving_impl
.
intros
???
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment