Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Gaëtan Gilbert
Iris
Commits
b05be077
Commit
b05be077
authored
4 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
bupd, fupd: add idempotence lemmas
parent
920bc3d9
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
iris/bi/updates.v
+12
-0
12 additions, 0 deletions
iris/bi/updates.v
with
12 additions
and
0 deletions
iris/bi/updates.v
+
12
−
0
View file @
b05be077
...
@@ -184,6 +184,12 @@ Section bupd_derived.
...
@@ -184,6 +184,12 @@ Section bupd_derived.
Proof
.
by
rewrite
bupd_frame_r
wand_elim_r
.
Qed
.
Proof
.
by
rewrite
bupd_frame_r
wand_elim_r
.
Qed
.
Lemma
bupd_sep
P
Q
:
(|
==>
P
)
∗
(|
==>
Q
)
==∗
P
∗
Q
.
Lemma
bupd_sep
P
Q
:
(|
==>
P
)
∗
(|
==>
Q
)
==∗
P
∗
Q
.
Proof
.
by
rewrite
bupd_frame_r
bupd_frame_l
bupd_trans
.
Qed
.
Proof
.
by
rewrite
bupd_frame_r
bupd_frame_l
bupd_trans
.
Qed
.
Lemma
bupd_idemp
P
:
(|
==>
|
==>
P
)
⊣⊢
|
==>
P
.
Proof
.
apply
:
anti_symm
.
-
apply
bupd_trans
.
-
apply
bupd_intro
.
Qed
.
Global
Instance
bupd_homomorphism
:
Global
Instance
bupd_homomorphism
:
MonoidHomomorphism
bi_sep
bi_sep
(
flip
(
⊢
))
(
bupd
(
PROP
:=
PROP
))
.
MonoidHomomorphism
bi_sep
bi_sep
(
flip
(
⊢
))
(
bupd
(
PROP
:=
PROP
))
.
...
@@ -245,6 +251,12 @@ Section fupd_derived.
...
@@ -245,6 +251,12 @@ Section fupd_derived.
Proof
.
exact
:
fupd_intro_mask
.
Qed
.
Proof
.
exact
:
fupd_intro_mask
.
Qed
.
Lemma
fupd_except_0
E1
E2
P
:
(|
=
{
E1
,
E2
}=>
◇
P
)
=
{
E1
,
E2
}
=∗
P
.
Lemma
fupd_except_0
E1
E2
P
:
(|
=
{
E1
,
E2
}=>
◇
P
)
=
{
E1
,
E2
}
=∗
P
.
Proof
.
by
rewrite
{
1
}(
fupd_intro
E2
P
)
except_0_fupd
fupd_trans
.
Qed
.
Proof
.
by
rewrite
{
1
}(
fupd_intro
E2
P
)
except_0_fupd
fupd_trans
.
Qed
.
Lemma
fupd_idemp
E
P
:
(|
=
{
E
}=>
|
=
{
E
}=>
P
)
⊣⊢
|
=
{
E
}=>
P
.
Proof
.
apply
:
anti_symm
.
-
apply
fupd_trans
.
-
apply
fupd_intro
.
Qed
.
Lemma
fupd_frame_l
E1
E2
R
Q
:
(
R
∗
|
=
{
E1
,
E2
}=>
Q
)
=
{
E1
,
E2
}
=∗
R
∗
Q
.
Lemma
fupd_frame_l
E1
E2
R
Q
:
(
R
∗
|
=
{
E1
,
E2
}=>
Q
)
=
{
E1
,
E2
}
=∗
R
∗
Q
.
Proof
.
rewrite
!
(
comm
_
R
);
apply
fupd_frame_r
.
Qed
.
Proof
.
rewrite
!
(
comm
_
R
);
apply
fupd_frame_r
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment