Skip to content
Snippets Groups Projects
Commit ac310b6a authored by Gregory Malecha's avatar Gregory Malecha
Browse files

Minor notation cleanup to avoid casts.

parent d7eae97a
No related branches found
No related tags found
No related merge requests found
......@@ -130,8 +130,7 @@ Ltac unseal := rewrite !unseal_eqs /=.
Section primitive.
Local Arguments siProp_holds !_ _ /.
Notation "P ⊢ Q" := (siProp_entails P Q)
(at level 99, Q at level 200, right associativity).
Notation "P ⊢ Q" := (siProp_entails P Q).
Notation "'True'" := (siProp_pure True) : siProp_scope.
Notation "'False'" := (siProp_pure False) : siProp_scope.
Notation "'⌜' φ '⌝'" := (siProp_pure φ%type%stdpp) : siProp_scope.
......
......@@ -865,7 +865,7 @@ Lemma test_specialize_intuitionistic P Q :
P -∗ (P -∗ Q) -∗ Q.
Proof. iIntros "#HP #HQ". iSpecialize ("HQ" with "HP"). done. Qed.
Lemma test_iEval x y : (y + x)%nat = 1 -∗ S (x + y) = 2%nat : PROP.
Lemma test_iEval x y : (y + x)%nat = 1 ⊢@{PROP} S (x + y) = 2%nat ⌝.
Proof.
iIntros (H).
iEval (rewrite (Nat.add_comm x y) // H).
......@@ -880,21 +880,21 @@ Proof.
Qed.
Check "test_iSimpl_in".
Lemma test_iSimpl_in x y : (3 + x)%nat = y -∗ S (S (S x)) = y : PROP.
Lemma test_iSimpl_in x y : (3 + x)%nat = y ⊢@{PROP} S (S (S x)) = y ⌝.
Proof. iIntros "H". iSimpl in "H". Show. done. Qed.
Lemma test_iSimpl_in_2 x y z :
(3 + x)%nat = y -∗ (1 + y)%nat = z -∗
S (S (S x)) = y : PROP.
(3 + x)%nat = y ⊢@{PROP} (1 + y)%nat = z -∗
S (S (S x)) = y ⌝.
Proof. iIntros "H1 H2". iSimpl in "H1 H2". Show. done. Qed.
Lemma test_iSimpl_in3 x y z :
(3 + x)%nat = y -∗ (1 + y)%nat = z -∗
S (S (S x)) = y : PROP.
(3 + x)%nat = y ⊢@{PROP} (1 + y)%nat = z -∗
S (S (S x)) = y ⌝.
Proof. iIntros "#H1 H2". iSimpl in "#". Show. done. Qed.
Check "test_iSimpl_in4".
Lemma test_iSimpl_in4 x y : (3 + x)%nat = y -∗ S (S (S x)) = y : PROP.
Lemma test_iSimpl_in4 x y : (3 + x)%nat = y ⊢@{PROP} S (S (S x)) = y ⌝.
Proof. iIntros "H". Fail iSimpl in "%". by iSimpl in "H". Qed.
Check "test_iRename".
......
......@@ -67,7 +67,7 @@ Section tests.
iStartProof. iIntros (n) "$".
Qed.
Lemma test_embed_wand (P Q : PROP) : (P -∗ Q) -∗ P -∗ Q : monPred.
Lemma test_embed_wand (P Q : PROP) : (P -∗ Q) ⊢@{monPredI} P -∗ Q.
Proof.
iIntros "H HP". by iApply "H".
Qed.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment