Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Gaëtan Gilbert
Iris
Commits
a7913501
Commit
a7913501
authored
1 year ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
add another ▷ paradox by Yusuke
parent
3a10b3bd
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
iris/bi/lib/counterexamples.v
+144
-0
144 additions, 0 deletions
iris/bi/lib/counterexamples.v
with
144 additions
and
0 deletions
iris/bi/lib/counterexamples.v
+
144
−
0
View file @
a7913501
...
...
@@ -259,6 +259,150 @@ Module inv. Section inv.
Qed
.
End
inv
.
End
inv
.
(** This is another proof showing that we need the ▷ when opening invariants.
Unlike the two paradoxes above, this proof does not rely on impredicative
quantification -- at least, not directly. Instead it exploits the impredicative
quantification that is implicit in [fupd]. Unlike the previous paradox,
the [finish] token needs to be persistent for this paradox to work.
This paradox is due to Yusuke Matsushita. *)
Module
inv2
.
Section
inv2
.
Context
{
PROP
:
bi
}
`{
!
BiAffine
PROP
}
.
Implicit
Types
P
:
PROP
.
(** Assumptions *)
(** We have the update modality (two classes: empty/full mask) *)
Inductive
mask
:=
M0
|
M1
.
Context
(
fupd
:
mask
→
PROP
→
PROP
)
.
Hypothesis
fupd_intro
:
∀
E
P
,
P
⊢
fupd
E
P
.
Hypothesis
fupd_mono
:
∀
E
P
Q
,
(
P
⊢
Q
)
→
fupd
E
P
⊢
fupd
E
Q
.
Hypothesis
fupd_fupd
:
∀
E
P
,
fupd
E
(
fupd
E
P
)
⊢
fupd
E
P
.
Hypothesis
fupd_frame_l
:
∀
E
P
Q
,
P
∗
fupd
E
Q
⊢
fupd
E
(
P
∗
Q
)
.
Hypothesis
fupd_mask_mono
:
∀
P
,
fupd
M0
P
⊢
fupd
M1
P
.
(** We have invariants *)
Context
(
name
:
Type
)
(
inv
:
name
→
PROP
→
PROP
)
.
Global
Arguments
inv
_
_
%
I
.
Hypothesis
inv_persistent
:
∀
i
P
,
Persistent
(
inv
i
P
)
.
Hypothesis
inv_alloc
:
∀
P
,
P
⊢
fupd
M1
(
∃
i
,
inv
i
P
)
.
Hypothesis
inv_fupd
:
∀
i
P
Q
R
,
(
P
∗
Q
⊢
fupd
M0
(
P
∗
R
))
→
(
inv
i
P
∗
Q
⊢
fupd
M1
R
)
.
(* We have tokens for a little "two-state STS": [start] -> [finish].
state. [start] also asserts the exact state; it is only ever owned by the
invariant. [finished] is persistent. *)
(* Posssible implementations of these axioms:
* Using the STS monoid of a two-state STS, where [start] is the
authoritative saying the state is exactly [start], and [finish]
is the "we are at least in state [finish]" typically owned by threads.
* Ex () +_## ()
*)
Context
(
gname
:
Type
)
.
Context
(
start
finished
:
gname
→
PROP
)
.
Hypothesis
sts_alloc
:
⊢
fupd
M0
(
∃
γ
,
start
γ
)
.
Hypotheses
start_finish
:
∀
γ
,
start
γ
⊢
fupd
M0
(
finished
γ
)
.
Hypothesis
finished_not_start
:
∀
γ
,
start
γ
∗
finished
γ
⊢
False
.
Hypothesis
finished_persistent
:
∀
γ
,
Persistent
(
finished
γ
)
.
(** We assume that we cannot update to false. *)
Hypothesis
consistency
:
¬
(
⊢
fupd
M1
False
)
.
(** Some general lemmas and proof mode compatibility. *)
Lemma
inv_fupd'
i
P
R
:
inv
i
P
∗
(
P
-∗
fupd
M0
(
P
∗
fupd
M1
R
))
⊢
fupd
M1
R
.
Proof
.
iIntros
"(#HiP & HP)"
.
iApply
fupd_fupd
.
iApply
inv_fupd
;
last
first
.
{
iSplit
;
first
done
.
iExact
"HP"
.
}
iIntros
"(HP & HPw)"
.
by
iApply
"HPw"
.
Qed
.
Global
Instance
fupd_mono'
E
:
Proper
((
⊢
)
==>
(
⊢
))
(
fupd
E
)
.
Proof
.
intros
P
Q
?
.
by
apply
fupd_mono
.
Qed
.
Global
Instance
fupd_proper
E
:
Proper
((
⊣⊢
)
==>
(
⊣⊢
))
(
fupd
E
)
.
Proof
.
intros
P
Q
;
rewrite
!
bi
.
equiv_entails
=>
-
[??];
split
;
by
apply
fupd_mono
.
Qed
.
Lemma
fupd_frame_r
E
P
Q
:
fupd
E
P
∗
Q
⊢
fupd
E
(
P
∗
Q
)
.
Proof
.
by
rewrite
comm
fupd_frame_l
comm
.
Qed
.
Global
Instance
elim_fupd_fupd
p
E
P
Q
:
ElimModal
True
p
false
(
fupd
E
P
)
P
(
fupd
E
Q
)
(
fupd
E
Q
)
.
Proof
.
by
rewrite
/
ElimModal
bi
.
intuitionistically_if_elim
fupd_frame_r
bi
.
wand_elim_r
fupd_fupd
.
Qed
.
Global
Instance
elim_fupd0_fupd1
p
P
Q
:
ElimModal
True
p
false
(
fupd
M0
P
)
P
(
fupd
M1
Q
)
(
fupd
M1
Q
)
.
Proof
.
by
rewrite
/
ElimModal
bi
.
intuitionistically_if_elim
fupd_frame_r
bi
.
wand_elim_r
fupd_mask_mono
fupd_fupd
.
Qed
.
Global
Instance
exists_split_fupd0
{
A
}
E
P
(
Φ
:
A
→
PROP
)
:
FromExist
P
Φ
→
FromExist
(
fupd
E
P
)
(
λ
a
,
fupd
E
(
Φ
a
))
.
Proof
.
rewrite
/
FromExist
=>
HP
.
apply
bi
.
exist_elim
=>
a
.
apply
fupd_mono
.
by
rewrite
-
HP
-
(
bi
.
exist_intro
a
)
.
Qed
.
(** Now to the actual counterexample. *)
(** A version of ⊥ behind a persistent update. *)
Definition
B
:
PROP
:=
□
fupd
M1
False
.
(** A delayed-initialization invariant storing [B]. *)
Definition
P
(
γ
:
gname
)
:
PROP
:=
start
γ
∨
B
.
Definition
I
(
i
:
name
)
(
γ
:
gname
)
:
PROP
:=
inv
i
(
P
γ
)
.
(** If we can ever finish initializing the invariant, we have a
contradiction. *)
Lemma
finished_contradiction
γ
i
:
finished
γ
∗
I
i
γ
-∗
B
.
Proof
.
iIntros
"[#Hfin #HI] !>"
.
iApply
(
inv_fupd'
i
)
.
iSplit
;
first
done
.
iIntros
"[Hstart|#Hfalse]"
.
{
iDestruct
(
finished_not_start
with
"[$Hfin $Hstart]"
)
as
%
[]
.
}
iApply
fupd_intro
.
iSplitR
;
last
done
.
by
iRight
.
Qed
.
(** If we can even just create the invariant, we can finish initializing it
using the above lemma, and then get the contradiction. *)
Lemma
invariant_contradiction
γ
i
:
I
i
γ
-∗
B
.
Proof
.
iIntros
"#HI !>"
.
iApply
(
inv_fupd'
i
)
.
iSplit
;
first
done
.
iIntros
"HP"
.
iAssert
(
fupd
M0
B
)
with
"[HP]"
as
">#Hfalse"
.
{
iDestruct
"HP"
as
"[Hstart|#Hfalse]"
;
last
by
iApply
fupd_intro
.
iMod
(
start_finish
with
"Hstart"
)
.
iApply
fupd_intro
.
(** There's a magic moment here where we have the invariant open,
but inside [finished_contradiction] we will be proving
a [fupd M1] and so we can open the invariant *again*.
Really we are just building up a thunk that can be used
later when the invariant is closed again. But to build up that
thunk we can use resources that we just got out of the invariant,
before closing it again. *)
iApply
finished_contradiction
.
eauto
.
}
iApply
fupd_intro
.
iSplitR
;
last
done
.
by
iRight
.
Qed
.
(** Of course, creating the invariant is trivial. *)
Lemma
contradiction
:
False
.
Proof
using
All
.
apply
consistency
.
iMod
sts_alloc
as
(
γ
)
"Hstart"
.
iMod
(
inv_alloc
(
P
γ
)
with
"[Hstart]"
)
as
(
i
)
"HI"
.
{
by
iLeft
.
}
iDestruct
(
invariant_contradiction
with
"HI"
)
as
"#>[]"
.
Qed
.
End
inv2
.
End
inv2
.
(** This proves that if we have linear impredicative invariants, we can still
drop arbitrary resources (i.e., we can "defeat" linearity).
We assume [cinv_alloc] without any bells or whistles.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment