Skip to content
Snippets Groups Projects
Commit a0ee21d2 authored by Ralf Jung's avatar Ralf Jung
Browse files

make use of new std++ lemmas

parent cac67ba3
No related branches found
No related tags found
No related merge requests found
......@@ -496,8 +496,9 @@ Lemma big_opS_set_map `{Countable A, Countable B} (h : A → B) (X : gset A) (f
([^o set] x set_map h X, f x) ([^o set] x X, f (h x)).
Proof.
intros Hinj.
induction X as [|x X ? IH] using set_ind_L => //=; [ by rewrite !big_opS_empty | ].
replace (set_map h ({[x]} X)) with ({[h x]} (set_map h X) : gset B) by set_solver.
induction X as [|x X ? IH] using set_ind_L.
{ by rewrite set_map_empty !big_opS_empty. }
rewrite set_map_union_L set_map_singleton_L.
rewrite !big_opS_union; [|set_solver..].
rewrite !big_opS_singleton IH //.
Qed.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment