Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Gaëtan Gilbert
Iris
Commits
9df1dae0
Commit
9df1dae0
authored
8 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
appendix: base logic is now up-to-date
parent
0621aa23
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
algebra/upred.v
+44
-33
44 additions, 33 deletions
algebra/upred.v
docs/base-logic.tex
+49
-43
49 additions, 43 deletions
docs/base-logic.tex
with
93 additions
and
76 deletions
algebra/upred.v
+
44
−
33
View file @
9df1dae0
...
...
@@ -1002,9 +1002,6 @@ Proof.
by
rewrite
cmra_core_l
cmra_core_idemp
.
Qed
.
Lemma
always_later
P
:
□
▷
P
⊣⊢
▷
□
P
.
Proof
.
by
unseal
.
Qed
.
(* Always derived *)
Hint
Resolve
always_mono
always_elim
.
Global
Instance
always_mono'
:
Proper
((
⊢
)
==>
(
⊢
))
(
@
uPred_always
M
)
.
...
...
@@ -1069,32 +1066,6 @@ Proof. intros; rewrite -always_and_sep_l'; auto. Qed.
Lemma
always_entails_r'
P
Q
:
(
P
⊢
□
Q
)
→
P
⊢
P
★
□
Q
.
Proof
.
intros
;
rewrite
-
always_and_sep_r'
;
auto
.
Qed
.
(* Conditional always *)
Global
Instance
always_if_ne
n
p
:
Proper
(
dist
n
==>
dist
n
)
(
@
uPred_always_if
M
p
)
.
Proof
.
solve_proper
.
Qed
.
Global
Instance
always_if_proper
p
:
Proper
((
⊣⊢
)
==>
(
⊣⊢
))
(
@
uPred_always_if
M
p
)
.
Proof
.
solve_proper
.
Qed
.
Global
Instance
always_if_mono
p
:
Proper
((
⊢
)
==>
(
⊢
))
(
@
uPred_always_if
M
p
)
.
Proof
.
solve_proper
.
Qed
.
Lemma
always_if_elim
p
P
:
□
?p
P
⊢
P
.
Proof
.
destruct
p
;
simpl
;
auto
using
always_elim
.
Qed
.
Lemma
always_elim_if
p
P
:
□
P
⊢
□
?p
P
.
Proof
.
destruct
p
;
simpl
;
auto
using
always_elim
.
Qed
.
Lemma
always_if_pure
p
φ
:
□
?p
■
φ
⊣⊢
■
φ
.
Proof
.
destruct
p
;
simpl
;
auto
using
always_pure
.
Qed
.
Lemma
always_if_and
p
P
Q
:
□
?p
(
P
∧
Q
)
⊣⊢
□
?p
P
∧
□
?p
Q
.
Proof
.
destruct
p
;
simpl
;
auto
using
always_and
.
Qed
.
Lemma
always_if_or
p
P
Q
:
□
?p
(
P
∨
Q
)
⊣⊢
□
?p
P
∨
□
?p
Q
.
Proof
.
destruct
p
;
simpl
;
auto
using
always_or
.
Qed
.
Lemma
always_if_exist
{
A
}
p
(
Ψ
:
A
→
uPred
M
)
:
(
□
?p
∃
a
,
Ψ
a
)
⊣⊢
∃
a
,
□
?p
Ψ
a
.
Proof
.
destruct
p
;
simpl
;
auto
using
always_exist
.
Qed
.
Lemma
always_if_sep
p
P
Q
:
□
?p
(
P
★
Q
)
⊣⊢
□
?p
P
★
□
?p
Q
.
Proof
.
destruct
p
;
simpl
;
auto
using
always_sep
.
Qed
.
Lemma
always_if_later
p
P
:
□
?p
▷
P
⊣⊢
▷
□
?p
P
.
Proof
.
destruct
p
;
simpl
;
auto
using
always_later
.
Qed
.
(* Later *)
Lemma
later_mono
P
Q
:
(
P
⊢
Q
)
→
▷
P
⊢
▷
Q
.
Proof
.
...
...
@@ -1128,6 +1099,10 @@ Proof.
eauto
using
uPred_closed
,
uPred_mono
,
cmra_included_includedN
.
Qed
.
Lemma
always_later
P
:
□
▷
P
⊣⊢
▷
□
P
.
Proof
.
by
unseal
.
Qed
.
(* Later derived *)
Lemma
later_proper
P
Q
:
(
P
⊣⊢
Q
)
→
▷
P
⊣⊢
▷
Q
.
Proof
.
by
intros
->
.
Qed
.
...
...
@@ -1169,6 +1144,34 @@ Proof. apply wand_intro_r; rewrite -later_sep; eauto using wand_elim_l. Qed.
Lemma
later_iff
P
Q
:
▷
(
P
↔
Q
)
⊢
▷
P
↔
▷
Q
.
Proof
.
by
rewrite
/
uPred_iff
later_and
!
later_impl
.
Qed
.
(* Conditional always *)
Global
Instance
always_if_ne
n
p
:
Proper
(
dist
n
==>
dist
n
)
(
@
uPred_always_if
M
p
)
.
Proof
.
solve_proper
.
Qed
.
Global
Instance
always_if_proper
p
:
Proper
((
⊣⊢
)
==>
(
⊣⊢
))
(
@
uPred_always_if
M
p
)
.
Proof
.
solve_proper
.
Qed
.
Global
Instance
always_if_mono
p
:
Proper
((
⊢
)
==>
(
⊢
))
(
@
uPred_always_if
M
p
)
.
Proof
.
solve_proper
.
Qed
.
Lemma
always_if_elim
p
P
:
□
?p
P
⊢
P
.
Proof
.
destruct
p
;
simpl
;
auto
using
always_elim
.
Qed
.
Lemma
always_elim_if
p
P
:
□
P
⊢
□
?p
P
.
Proof
.
destruct
p
;
simpl
;
auto
using
always_elim
.
Qed
.
Lemma
always_if_pure
p
φ
:
□
?p
■
φ
⊣⊢
■
φ
.
Proof
.
destruct
p
;
simpl
;
auto
using
always_pure
.
Qed
.
Lemma
always_if_and
p
P
Q
:
□
?p
(
P
∧
Q
)
⊣⊢
□
?p
P
∧
□
?p
Q
.
Proof
.
destruct
p
;
simpl
;
auto
using
always_and
.
Qed
.
Lemma
always_if_or
p
P
Q
:
□
?p
(
P
∨
Q
)
⊣⊢
□
?p
P
∨
□
?p
Q
.
Proof
.
destruct
p
;
simpl
;
auto
using
always_or
.
Qed
.
Lemma
always_if_exist
{
A
}
p
(
Ψ
:
A
→
uPred
M
)
:
(
□
?p
∃
a
,
Ψ
a
)
⊣⊢
∃
a
,
□
?p
Ψ
a
.
Proof
.
destruct
p
;
simpl
;
auto
using
always_exist
.
Qed
.
Lemma
always_if_sep
p
P
Q
:
□
?p
(
P
★
Q
)
⊣⊢
□
?p
P
★
□
?p
Q
.
Proof
.
destruct
p
;
simpl
;
auto
using
always_sep
.
Qed
.
Lemma
always_if_later
p
P
:
□
?p
▷
P
⊣⊢
▷
□
?p
P
.
Proof
.
destruct
p
;
simpl
;
auto
using
always_later
.
Qed
.
(* True now *)
Global
Instance
except_last_ne
n
:
Proper
(
dist
n
==>
dist
n
)
(
@
uPred_except_last
M
)
.
Proof
.
solve_proper
.
Qed
.
...
...
@@ -1226,10 +1229,9 @@ Proof.
by
rewrite
(
assoc
op
_
z1
)
-
(
comm
op
z1
)
(
assoc
op
z1
)
-
(
assoc
op
_
a2
)
(
comm
op
z1
)
-
Hy1
-
Hy2
.
Qed
.
Lemma
always_ownM
(
a
:
M
)
:
Persistent
a
→
□
uPred_ownM
a
⊣
⊢
uPred_ownM
a
.
Lemma
always_ownM
_core
(
a
:
M
)
:
uPred_ownM
a
⊢
□
uPred_ownM
(
core
a
)
.
Proof
.
split
=>
n
x
/=
;
split
;
[
by
apply
always_elim
|
unseal
;
intros
Hx
];
simpl
.
rewrite
-
(
persistent_core
a
)
.
by
apply
cmra_core_monoN
.
split
=>
n
x
/=
;
unseal
;
intros
Hx
.
simpl
.
by
apply
cmra_core_monoN
.
Qed
.
Lemma
ownM_empty
:
True
⊢
uPred_ownM
∅.
Proof
.
unseal
;
split
=>
n
x
??;
by
exists
x
;
rewrite
left_id
.
Qed
.
...
...
@@ -1250,18 +1252,27 @@ Lemma cmra_valid_intro {A : cmraT} (a : A) : ✓ a → True ⊢ ✓ a.
Proof
.
unseal
=>
?;
split
=>
n
x
?
_
/=
;
by
apply
cmra_valid_validN
.
Qed
.
Lemma
cmra_valid_elim
{
A
:
cmraT
}
(
a
:
A
)
:
¬
✓
{
0
}
a
→
✓
a
⊢
False
.
Proof
.
unseal
=>
Ha
;
split
=>
n
x
??;
apply
Ha
,
cmra_validN_le
with
n
;
auto
.
Qed
.
Lemma
always_cmra_valid
{
A
:
cmraT
}
(
a
:
A
)
:
□
✓
a
⊣
⊢
✓
a
.
Lemma
always_cmra_valid
_1
{
A
:
cmraT
}
(
a
:
A
)
:
✓
a
⊢
□
✓
a
.
Proof
.
by
unseal
.
Qed
.
Lemma
cmra_valid_weaken
{
A
:
cmraT
}
(
a
b
:
A
)
:
✓
(
a
⋅
b
)
⊢
✓
a
.
Proof
.
unseal
;
split
=>
n
x
_;
apply
cmra_validN_op_l
.
Qed
.
(* Own and valid derived *)
Lemma
always_ownM
(
a
:
M
)
:
Persistent
a
→
□
uPred_ownM
a
⊣⊢
uPred_ownM
a
.
Proof
.
intros
;
apply
(
anti_symm
_);
first
by
apply
:
always_elim
.
by
rewrite
{
1
}
always_ownM_core
persistent_core
.
Qed
.
Lemma
ownM_invalid
(
a
:
M
)
:
¬
✓
{
0
}
a
→
uPred_ownM
a
⊢
False
.
Proof
.
by
intros
;
rewrite
ownM_valid
cmra_valid_elim
.
Qed
.
Global
Instance
ownM_mono
:
Proper
(
flip
(
≼
)
==>
(
⊢
))
(
@
uPred_ownM
M
)
.
Proof
.
intros
a
b
[
b'
->
]
.
rewrite
ownM_op
.
eauto
.
Qed
.
Lemma
ownM_empty'
:
uPred_ownM
∅
⊣⊢
True
.
Proof
.
apply
(
anti_symm
_);
auto
using
ownM_empty
.
Qed
.
Lemma
always_cmra_valid
{
A
:
cmraT
}
(
a
:
A
)
:
□
✓
a
⊣⊢
✓
a
.
intros
;
apply
(
anti_symm
_);
first
by
apply
:
always_elim
.
apply
:
always_cmra_valid_1
.
Qed
.
(* Viewshifts *)
Lemma
rvs_intro
P
:
P
=
r
=>
P
.
...
...
This diff is collapsed.
Click to expand it.
docs/base-logic.tex
+
49
−
43
View file @
9df1dae0
...
...
@@ -299,78 +299,80 @@ Furthermore, we have the usual $\eta$ and $\beta$ laws for projections, $\lambda
{
\prop
\proves
\propB
\wand
\propC
}
\end{mathpar}
\paragraph
{
Laws for
ghosts and physical resources
.
}
\paragraph
{
Laws for
the always modality
.
}
\begin{mathpar}
\begin{array}
{
rMcMl
}
\ownGGhost
{
\melt
}
*
\ownGGhost
{
\meltB
}
&
\provesIff
&
\ownGGhost
{
\melt
\mtimes
\meltB
}
\\
\ownGGhost
{
\melt
}
&
\proves
&
\mval
(
\melt
)
\\
\TRUE
&
\proves
&
\ownGGhost
{
\munit
}
\end{array}
\infer
[$\always$-mono]
{
\prop
\proves
\propB
}
{
\always
{
\prop
}
\proves
\always
{
\propB
}}
\and
\begin{array}
[c]
{
rMcMl
}
\always
{
\prop
}
&
\proves
&
\prop
\\
\always
{
(
\prop
\land
\propB
)
}
&
\proves
&
\always
{
(
\prop
*
\propB
)
}
\\
\always
{
\prop
}
\land
\propB
&
\proves
&
\always
{
\prop
}
*
\propB
\end{array}
\and
\begin{array}
{
c
}
\ownPhys
{
\state
}
*
\ownPhys
{
\state
'
}
\proves
\FALSE
\begin{array}
[c]
{
rMcMl
}
\always
{
\prop
}
&
\proves
&
\always\always\prop
\\
\All
x.
\always
{
\prop
}
&
\proves
&
\always
{
\All
x.
\prop
}
\\
\always
{
\Exists
x.
\prop
}
&
\proves
&
\Exists
x.
\always
{
\prop
}
\end{array}
\end{mathpar}
\paragraph
{
Laws for the later modality.
}
\begin{mathpar}
\infer
[$\later$-mono]
{
\p
fctx
\proves
\prop
}
{
\
pfctx
\proves
\later
{
\prop
}}
{
\p
rop
\proves
\prop
B
}
{
\
later\prop
\proves
\later
{
\prop
B
}}
\and
\infer
[L{\"o}b]
{}
{
(
\later\prop\Ra\prop
)
\proves
\prop
}
\and
\infer
[$\later$-$\exists$]
{
\text
{$
\type
$
is inhabited
}}
{
\later
{
\Exists
x:
\type
.
\prop
}
\proves
\Exists
x:
\type
.
\later\prop
}
\\\\
\begin{array}
[c]
{
rMcMl
}
\later
{
(
\prop
\wedge
\propB
)
}
&
\provesIff
&
\later
{
\prop
}
\wedge
\later
{
\propB
}
\\
\later
{
(
\prop
\vee
\propB
)
}
&
\provesIff
&
\later
{
\prop
}
\vee
\later
{
\propB
}
\\
\All
x.
\later\prop
&
\proves
&
\later
{
\All
x.
\prop
}
\\
\later\Exists
x.
\prop
&
\proves
&
\later\FALSE
\lor
{
\Exists
x.
\later\prop
}
\\
\later\prop
&
\proves
&
\later\FALSE
\lor
(
\later\FALSE
\Ra
\prop
)
\\
\end{array}
\and
\begin{array}
[c]
{
rMcMl
}
\later
{
\All
x.
\prop
}
&
\provesIff
&
\All
x.
\later\prop
\\
\Exists
x.
\later\prop
&
\proves
&
\later
{
\Exists
x.
\prop
}
\\
\later
{
(
\prop
*
\propB
)
}
&
\provesIff
&
\later\prop
*
\later\propB
\later
{
(
\prop
*
\propB
)
}
&
\provesIff
&
\later\prop
*
\later\propB
\\
\always
{
\later\prop
}
&
\provesIff
&
\later\always
{
\prop
}
\\
\end{array}
\end{mathpar}
A type
$
\type
$
being
\emph
{
inhabited
}
means that
$
\proves
\wtt
{
\term
}{
\type
}$
is derivable for some
$
\term
$
.
\paragraph
{
Laws for the always modality.
}
\paragraph
{
Laws for ghosts and validity.
}
\begin{mathpar}
\infer
[$\always$I]
{
\always
{
\pfctx
}
\proves
\prop
}
{
\always
{
\pfctx
}
\proves
\always
{
\prop
}}
\and
\infer
[$\always$E]
{}
{
\always
{
\prop
}
\proves
\prop
}
\and
\begin{array}
[c]
{
rMcMl
}
\always
{
(
\prop
\land
\propB
)
}
&
\proves
&
\always
{
(
\prop
*
\propB
)
}
\\
\always
{
\prop
}
\land
\propB
&
\proves
&
\always
{
\prop
}
*
\propB
\\
\always
{
\later\prop
}
&
\provesIff
&
\later\always
{
\prop
}
\\
\end{array}
\and
\begin{array}
[c]
{
rMcMl
}
\always
{
(
\prop
\land
\propB
)
}
&
\provesIff
&
\always
{
\prop
}
\land
\always
{
\propB
}
\\
\always
{
(
\prop
\lor
\propB
)
}
&
\provesIff
&
\always
{
\prop
}
\lor
\always
{
\propB
}
\\
\always
{
\All
x.
\prop
}
&
\provesIff
&
\All
x.
\always
{
\prop
}
\\
\always
{
\Exists
x.
\prop
}
&
\provesIff
&
\Exists
x.
\always
{
\prop
}
\\
\begin{array}
{
rMcMl
}
\ownGGhost
{
\melt
}
*
\ownGGhost
{
\meltB
}
&
\provesIff
&
\ownGGhost
{
\melt
\mtimes
\meltB
}
\\
\ownGGhost\melt
&
\proves
&
\always
{
\ownGGhost
{
\mcore\melt
}}
\\
\TRUE
&
\proves
&
\ownGGhost
{
\munit
}
\\
\later\ownGGhost\melt
&
\proves
&
\Exists\meltB
.
\ownGGhost\meltB
\land
\later
(
\melt
=
\meltB
)
\end{array}
\and
{
\term
=
_
\type
\term
'
\proves
\always
\term
=
_
\type
\term
'
}
\infer
[valid-intro]
{
\melt
\in
\mval
}
{
\TRUE
\vdash
\mval
(
\melt
)
}
\and
{
\ownGGhost
{
\mcore\melt
}
\proves
\always
\ownGGhost
{
\mcore\melt
}}
\infer
[valid-elim]
{
\melt
\notin
\mval
_
0
}
{
\mval
(
\melt
)
\proves
\FALSE
}
\and
{
\mval
(
\melt
)
\proves
\always
\mval
(
\melt
)
}
\begin{array}
{
rMcMl
}
\ownGGhost
{
\melt
}
&
\proves
&
\mval
(
\melt
)
\\
\mval
(
\melt
\mtimes
\meltB
)
&
\proves
&
\mval
(
\melt
)
\\
\mval
(
\melt
)
&
\proves
&
\always\mval
(
\melt
)
\end{array}
\end{mathpar}
\paragraph
{
Laws for the update modality.
}
\begin{mathpar}
\infer
[upd-mono]
{
\prop
\proves
\propB
}
{
\upd\prop
\proves
\upd\propB
}
\infer
[upd-intro]
{}{
\prop
\proves
\upd
\prop
}
...
...
@@ -388,7 +390,11 @@ A type $\type$ being \emph{inhabited} means that $ \proves \wtt{\term}{\type}$ i
\subsection
{
Soundness
}
The soundness statement of the logic
The soundness statement of the logic reads as follows: For any
$
n
$
, we have
\begin{align*}
\lnot
(
\TRUE
\vdash
(
\upd\later
)
^
n
\FALSE
)
\end{align*}
where
$
(
\upd\later
)
^
n
$
is short for
$
\upd\later
$
being nested
$
n
$
times.
%%% Local Variables:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment