Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Gaëtan Gilbert
Iris
Commits
9d661288
Commit
9d661288
authored
8 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
fix types of the new instances
parent
0de297e1
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/proofmode/class_instances.v
+24
-25
24 additions, 25 deletions
theories/proofmode/class_instances.v
with
24 additions
and
25 deletions
theories/proofmode/class_instances.v
+
24
−
25
View file @
9d661288
...
@@ -43,32 +43,32 @@ Global Instance into_pure_cmra_valid `{CMRADiscrete A} (a : A) :
...
@@ -43,32 +43,32 @@ Global Instance into_pure_cmra_valid `{CMRADiscrete A} (a : A) :
@
IntoPure
M
(
✓
a
)
(
✓
a
)
.
@
IntoPure
M
(
✓
a
)
(
✓
a
)
.
Proof
.
by
rewrite
/
IntoPure
discrete_valid
.
Qed
.
Proof
.
by
rewrite
/
IntoPure
discrete_valid
.
Qed
.
Global
Instance
into_pure_pure_conj
(
φ1
φ2
:
u
Pr
ed
M
)
P1
P2
:
Global
Instance
into_pure_pure_conj
(
φ1
φ2
:
Pr
op
)
P1
P2
:
IntoPure
φ
1
P
1
->
IntoPure
φ
2
P
2
->
IntoPure
(
φ
1
∧
φ
2
)
(
P
1
∧
P
2
)
.
IntoPure
P
1
φ
1
->
IntoPure
P
2
φ
2
->
IntoPure
(
P
1
∧
P
2
)
(
φ
1
∧
φ
2
)
.
Proof
.
rewrite
/
IntoPure
pure_and
.
by
intros
->
->
.
Qed
.
Proof
.
rewrite
/
IntoPure
pure_and
.
by
intros
->
->
.
Qed
.
Global
Instance
into_pure_pure_sep
(
φ1
φ2
:
u
Pr
ed
M
)
P1
P2
:
Global
Instance
into_pure_pure_sep
(
φ1
φ2
:
Pr
op
)
P1
P2
:
IntoPure
φ
1
P
1
->
IntoPure
φ
2
P
2
->
IntoPure
(
φ
1
∗
φ
2
)
(
P
1
∧
P
2
)
.
IntoPure
P
1
φ
1
->
IntoPure
P
2
φ
2
->
IntoPure
(
P
1
∗
P
2
)
(
φ
1
∧
φ
2
)
.
Proof
.
rewrite
/
IntoPure
sep_and
pure_and
.
by
intros
->
->
.
Qed
.
Proof
.
rewrite
/
IntoPure
sep_and
pure_and
.
by
intros
->
->
.
Qed
.
Global
Instance
into_pure_pure_disj
(
φ1
φ2
:
u
Pr
ed
M
)
P1
P2
:
Global
Instance
into_pure_pure_disj
(
φ1
φ2
:
Pr
op
)
P1
P2
:
IntoPure
φ
1
P
1
->
IntoPure
φ
2
P
2
->
IntoPure
(
φ
1
∨
φ
2
)
(
P
1
∨
P
2
)
.
IntoPure
P
1
φ
1
->
IntoPure
P
2
φ
2
->
IntoPure
(
P
1
∨
P
2
)
(
φ
1
∨
φ
2
)
.
Proof
.
rewrite
/
IntoPure
pure_or
.
by
intros
->
->
.
Qed
.
Proof
.
rewrite
/
IntoPure
pure_or
.
by
intros
->
->
.
Qed
.
Global
Instance
into_pure_pure_impl
(
φ1
φ2
:
u
Pr
ed
M
)
P1
P2
:
Global
Instance
into_pure_pure_impl
(
φ1
φ2
:
Pr
op
)
P1
P2
:
FromPure
φ
1
P
1
->
IntoPure
φ
2
P
2
->
IntoPure
(
φ
1
→
φ
2
)
(
P
1
→
P
2
)
.
FromPure
P
1
φ
1
->
IntoPure
P
2
φ
2
->
IntoPure
(
P
1
→
P
2
)
(
φ
1
→
φ
2
)
.
Proof
.
rewrite
/
FromPure
/
IntoPure
pure_impl
.
by
intros
->
->
.
Qed
.
Proof
.
rewrite
/
FromPure
/
IntoPure
pure_impl
.
by
intros
->
->
.
Qed
.
Global
Instance
into_pure_pure_wand
(
φ1
φ2
:
u
Pr
ed
M
)
P1
P2
:
Global
Instance
into_pure_pure_wand
(
φ1
φ2
:
Pr
op
)
P1
P2
:
FromPure
φ
1
P
1
->
IntoPure
φ
2
P
2
->
IntoPure
(
φ
1
-∗
φ
2
)
(
P
1
→
P
2
)
.
FromPure
P
1
φ
1
->
IntoPure
P
2
φ
2
->
IntoPure
(
P
1
-∗
P
2
)
(
φ
1
→
φ
2
)
.
Proof
.
Proof
.
rewrite
/
FromPure
/
IntoPure
pure_impl
always_impl_wand
.
by
intros
->
->
.
rewrite
/
FromPure
/
IntoPure
pure_impl
always_impl_wand
.
by
intros
->
->
.
Qed
.
Qed
.
Global
Instance
into_pure_exist
{
X
:
Type
}
(
Φ
:
X
→
uPred
M
)
φ
:
Global
Instance
into_pure_exist
{
X
:
Type
}
(
Φ
:
X
→
uPred
M
)
(
φ
:
X
→
Prop
)
:
(
∀
x
,
@
IntoPure
M
(
Φ
x
)
(
φ
x
))
→
@
IntoPure
M
(
∃
x
,
Φ
x
)
(
∃
x
,
φ
x
)
.
(
∀
x
,
@
IntoPure
M
(
Φ
x
)
(
φ
x
))
→
@
IntoPure
M
(
∃
x
,
Φ
x
)
(
∃
x
,
φ
x
)
.
Proof
.
Proof
.
rewrite
/
IntoPure
=>
Hx
.
apply
exist_elim
=>
x
.
rewrite
Hx
.
rewrite
/
IntoPure
=>
Hx
.
apply
exist_elim
=>
x
.
rewrite
Hx
.
apply
pure_elim'
=>
Hφ
.
apply
pure_intro
.
eauto
.
apply
pure_elim'
=>
Hφ
.
apply
pure_intro
.
eauto
.
Qed
.
Qed
.
Global
Instance
into_pure_forall
{
X
:
Type
}
(
Φ
:
X
→
uPred
M
)
φ
:
Global
Instance
into_pure_forall
{
X
:
Type
}
(
Φ
:
X
→
uPred
M
)
(
φ
:
X
→
Prop
)
:
(
∀
x
,
@
IntoPure
M
(
Φ
x
)
(
φ
x
))
→
@
IntoPure
M
(
∀
x
,
Φ
x
)
(
∀
x
,
φ
x
)
.
(
∀
x
,
@
IntoPure
M
(
Φ
x
)
(
φ
x
))
→
@
IntoPure
M
(
∀
x
,
Φ
x
)
(
∀
x
,
φ
x
)
.
Proof
.
Proof
.
rewrite
/
IntoPure
=>
Hx
.
rewrite
-
pure_forall_2
.
by
setoid_rewrite
Hx
.
rewrite
/
IntoPure
=>
Hx
.
rewrite
-
pure_forall_2
.
by
setoid_rewrite
Hx
.
...
@@ -91,32 +91,31 @@ Qed.
...
@@ -91,32 +91,31 @@ Qed.
Global
Instance
from_pure_bupd
P
φ
:
FromPure
P
φ
→
FromPure
(|
==>
P
)
φ
.
Global
Instance
from_pure_bupd
P
φ
:
FromPure
P
φ
→
FromPure
(|
==>
P
)
φ
.
Proof
.
rewrite
/
FromPure
=>
->
.
apply
bupd_intro
.
Qed
.
Proof
.
rewrite
/
FromPure
=>
->
.
apply
bupd_intro
.
Qed
.
Global
Instance
from_pure_pure_conj
(
φ1
φ2
:
Prop
)
P1
P2
:
Global
Instance
from_pure_pure_conj
(
φ1
φ2
:
uPred
M
)
P1
P2
:
FromPure
P1
φ1
->
FromPure
P2
φ2
->
FromPure
(
P1
∧
P2
)
(
φ1
∧
φ2
)
.
FromPure
φ1
P1
->
FromPure
φ2
P2
->
FromPure
(
φ1
∧
φ2
)
(
P1
∧
P2
)
.
Proof
.
rewrite
/
FromPure
pure_and
.
by
intros
->
->
.
Qed
.
Proof
.
rewrite
/
FromPure
pure_and
.
by
intros
->
->
.
Qed
.
Global
Instance
from_pure_pure_sep
(
φ1
φ2
:
u
Pr
ed
M
)
P1
P2
:
Global
Instance
from_pure_pure_sep
(
φ1
φ2
:
Pr
op
)
P1
P2
:
FromPure
φ
1
P
1
->
FromPure
φ
2
P
2
->
FromPure
(
φ
1
∗
φ
2
)
(
P
1
∧
P
2
)
.
FromPure
P
1
φ
1
->
FromPure
P
2
φ
2
->
FromPure
(
P
1
∗
P
2
)
(
φ
1
∧
φ
2
)
.
Proof
.
rewrite
/
FromPure
pure_and
always_and_sep_l
.
by
intros
->
->
.
Qed
.
Proof
.
rewrite
/
FromPure
pure_and
always_and_sep_l
.
by
intros
->
->
.
Qed
.
Global
Instance
from_pure_pure_disj
(
φ1
φ2
:
u
Pr
ed
M
)
P1
P2
:
Global
Instance
from_pure_pure_disj
(
φ1
φ2
:
Pr
op
)
P1
P2
:
FromPure
φ
1
P
1
->
FromPure
φ
2
P
2
->
FromPure
(
φ
1
∨
φ
2
)
(
P
1
∨
P
2
)
.
FromPure
P
1
φ
1
->
FromPure
P
2
φ
2
->
FromPure
(
P
1
∨
P
2
)
(
φ
1
∨
φ
2
)
.
Proof
.
rewrite
/
FromPure
pure_or
.
by
intros
->
->
.
Qed
.
Proof
.
rewrite
/
FromPure
pure_or
.
by
intros
->
->
.
Qed
.
Global
Instance
from_pure_pure_impl
(
φ1
φ2
:
u
Pr
ed
M
)
P1
P2
:
Global
Instance
from_pure_pure_impl
(
φ1
φ2
:
Pr
op
)
P1
P2
:
IntoPure
φ
1
P
1
->
FromPure
φ
2
P
2
->
FromPure
(
φ
1
→
φ
2
)
(
P
1
→
P
2
)
.
IntoPure
P
1
φ
1
->
FromPure
P
2
φ
2
->
FromPure
(
P
1
→
P
2
)
(
φ
1
→
φ
2
)
.
Proof
.
rewrite
/
FromPure
/
IntoPure
pure_impl
.
by
intros
->
->
.
Qed
.
Proof
.
rewrite
/
FromPure
/
IntoPure
pure_impl
.
by
intros
->
->
.
Qed
.
Global
Instance
from_pure_pure_wand
(
φ1
φ2
:
u
Pr
ed
M
)
P1
P2
:
Global
Instance
from_pure_pure_wand
(
φ1
φ2
:
Pr
op
)
P1
P2
:
IntoPure
φ
1
P
1
->
FromPure
φ
2
P
2
->
FromPure
(
φ
1
-∗
φ
2
)
(
P
1
→
P
2
)
.
IntoPure
P
1
φ
1
->
FromPure
P
2
φ
2
->
FromPure
(
P
1
-∗
P
2
)
(
φ
1
→
φ
2
)
.
Proof
.
Proof
.
rewrite
/
FromPure
/
IntoPure
pure_impl
always_impl_wand
.
by
intros
->
->
.
rewrite
/
FromPure
/
IntoPure
pure_impl
always_impl_wand
.
by
intros
->
->
.
Qed
.
Qed
.
Global
Instance
from_pure_exist
{
X
:
Type
}
(
Φ
:
X
→
uPred
M
)
φ
:
Global
Instance
from_pure_exist
{
X
:
Type
}
(
Φ
:
X
→
uPred
M
)
(
φ
:
X
→
Prop
)
:
(
∀
x
,
@
FromPure
M
(
Φ
x
)
(
φ
x
))
→
@
FromPure
M
(
∃
x
,
Φ
x
)
(
∃
x
,
φ
x
)
.
(
∀
x
,
@
FromPure
M
(
Φ
x
)
(
φ
x
))
→
@
FromPure
M
(
∃
x
,
Φ
x
)
(
∃
x
,
φ
x
)
.
Proof
.
Proof
.
rewrite
/
FromPure
=>
Hx
.
apply
pure_elim'
=>
-
[
x
?]
.
rewrite
-
(
exist_intro
x
)
.
rewrite
/
FromPure
=>
Hx
.
apply
pure_elim'
=>
-
[
x
?]
.
rewrite
-
(
exist_intro
x
)
.
rewrite
-
Hx
.
apply
pure_intro
.
done
.
rewrite
-
Hx
.
apply
pure_intro
.
done
.
Qed
.
Qed
.
Global
Instance
from_pure_forall
{
X
:
Type
}
(
Φ
:
X
→
uPred
M
)
φ
:
Global
Instance
from_pure_forall
{
X
:
Type
}
(
Φ
:
X
→
uPred
M
)
(
φ
:
X
→
Prop
)
:
(
∀
x
,
@
FromPure
M
(
Φ
x
)
(
φ
x
))
→
@
FromPure
M
(
∀
x
,
Φ
x
)
(
∀
x
,
φ
x
)
.
(
∀
x
,
@
FromPure
M
(
Φ
x
)
(
φ
x
))
→
@
FromPure
M
(
∀
x
,
Φ
x
)
(
∀
x
,
φ
x
)
.
Proof
.
Proof
.
rewrite
/
FromPure
=>
Hx
.
apply
forall_intro
=>
x
.
apply
pure_elim'
=>
Hφ
.
rewrite
/
FromPure
=>
Hx
.
apply
forall_intro
=>
x
.
apply
pure_elim'
=>
Hφ
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment