Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Gaëtan Gilbert
Iris
Commits
9833e872
Commit
9833e872
authored
4 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
All list "map singleton" lemmas consistently use `singletonM` in their name
parent
fea0c2de
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
CHANGELOG.md
+19
-19
19 additions, 19 deletions
CHANGELOG.md
theories/algebra/list.v
+32
-32
32 additions, 32 deletions
theories/algebra/list.v
with
51 additions
and
51 deletions
CHANGELOG.md
+
19
−
19
View file @
9833e872
...
@@ -220,18 +220,17 @@ Coq 8.10, 8.11, and 8.12 are newly supported by this release, and Coq 8.7 and
...
@@ -220,18 +220,17 @@ Coq 8.10, 8.11, and 8.12 are newly supported by this release, and Coq 8.7 and
`sts_op_auth_frag`
→
`sts_auth_frag_op`
,
`sts_op_auth_frag`
→
`sts_auth_frag_op`
,
`sts_op_auth_frag_up`
→
`sts_auth_frag_up_op`
,
`sts_op_auth_frag_up`
→
`sts_auth_frag_up_op`
,
`sts_op_frag`
→
`sts_frag_op`
,
`sts_op_frag`
→
`sts_frag_op`
,
`list_op_length`
→
`list_length_op`
.
`list_op_length`
→
`list_length_op`
,
*
Make list singleton lemmas consistent with gmap by dropping the
`M`
suffix of
`list_core_singletonM`
→
`list_singletonM_core`
,
`singleton`
:
`list_op_singletonM`
→
`list_singletonM_op`
.
`elem_of_list_singletonM`
→
`elem_of_list_singleton`
,
*
All list "map singleton" lemmas consistently use
`singletonM`
in their name:
`list_lookup_singletonM`
→
`list_lookup_singleton`
,
`list_singleton_valid`
→
`list_singletonM_valid`
,
`list_lookup_singletonM_lt`
→
`list_lookup_singleton_lt`
,
`list_singleton_core_id`
→
`list_singletonM_core_id`
,
`list_lookup_singletonM_gt`
→
`list_lookup_singleton_gt`
,
`list_singleton_snoc`
→
`list_singletonM_snoc`
,
`list_lookup_singletonM_ne`
→
`list_lookup_singleton_ne`
,
`list_singleton_updateP`
→
`list_singletonM_updateP`
,
`list_singletonM_validN`
→
`list_singleton_validN`
,
`list_singleton_updateP'`
→
`list_singletonM_updateP'`
,
`list_singletonM_length`
→
`list_singleton_length`
,
`list_singleton_update`
→
`list_singletonM_update`
,
`list_alter_singletonM`
→
`list_alter_singleton`
,
`list_alloc_singleton_local_update`
→
`list_alloc_singletonM_local_update`
.
`list_singletonM_included`
→
`list_singleton_included`
.
*
Add
`list_singletonM_included`
and
`list_lookup_singletonM_{lt,gt}`
lemmas
*
Add
`list_singletonM_included`
and
`list_lookup_singletonM_{lt,gt}`
lemmas
about singletons in the list RA.
about singletons in the list RA.
*
Add
`list_core_id'`
, a stronger version of
`list_core_id`
which only talks
*
Add
`list_core_id'`
, a stronger version of
`list_core_id`
which only talks
...
@@ -260,15 +259,16 @@ s/\bsingleton_included_exclusive\b/singleton_included_exclusive_l/g
...
@@ -260,15 +259,16 @@ s/\bsingleton_included_exclusive\b/singleton_included_exclusive_l/g
# f_op/f_core renames
# f_op/f_core renames
s/\b(op|core)_singleton\b/singleton_\1/g
s/\b(op|core)_singleton\b/singleton_\1/g
s/\bdiscrete_fun_(op|core)_singleton\b/discrete_fun_singleton_\1/g
s/\bdiscrete_fun_(op|core)_singleton\b/discrete_fun_singleton_\1/g
s/\blist_(op|core)_singletonM\b/list_singleton_\1/g
s/\bsts_op_(auth_frag|auth_frag_up|frag)\b/sts_\1_op/g
s/\bsts_op_(auth_frag|auth_frag_up|frag)\b/sts_\1_op/g
s/\blist_(op|core)_singletonM\b/list_singletonM_\1/g
s/\blist_op_length\b/list_length_op/g
s/\blist_op_length\b/list_length_op/g
# list singleton renames
# list "singleton map" renames
s/\belem_of_list_singletonM\b/elem_of_list_singleton/g
s/\blist_singleton_valid\b/list_singletonM_valid/g
s/\blist_lookup_singletonM(|_lt|_gt|_ne)\b/list_lookup_singleton\1/g
s/\blist_singleton_core_id\b/list_singletonM_core_id/g
s/\blist_singletonM_(validN|length)\b/list_singleton_\1/g
s/\blist_singleton_snoc\b/list_singletonM_snoc/g
s/\blist_alter_singletonM\b/list_alter_singleton/g
s/\blist_singleton_updateP\b/list_singletonM_updateP/g
s/\blist_singletonM_included\b/list_singleton_included/g
s/\blist_singleton_update\b/list_singletonM_update/g
s/\blist_alloc_singleton_local_update\b/list_alloc_singletonM_local_update/g
# inv renames
# inv renames
s/\binv_sep(|_1|_2)\b/inv_split\1/g
s/\binv_sep(|_1|_2)\b/inv_split\1/g
s/\binv_acc\b/inv_alter/g
s/\binv_acc\b/inv_alter/g
...
...
This diff is collapsed.
Click to expand it.
theories/algebra/list.v
+
32
−
32
View file @
9833e872
...
@@ -365,79 +365,79 @@ Section properties.
...
@@ -365,79 +365,79 @@ Section properties.
Global
Instance
list_singletonM_proper
i
:
Global
Instance
list_singletonM_proper
i
:
Proper
((
≡
)
==>
(
≡
))
(
list_singletonM
i
)
:=
ne_proper
_
.
Proper
((
≡
)
==>
(
≡
))
(
list_singletonM
i
)
:=
ne_proper
_
.
Lemma
elem_of_list_singleton
i
z
x
:
z
∈
({[
i
:=
x
]}
:
list
A
)
→
z
=
ε
∨
z
=
x
.
Lemma
elem_of_list_singleton
M
i
z
x
:
z
∈
({[
i
:=
x
]}
:
list
A
)
→
z
=
ε
∨
z
=
x
.
Proof
.
Proof
.
rewrite
elem_of_app
elem_of_list_singleton
elem_of_replicate
.
naive_solver
.
rewrite
elem_of_app
elem_of_list_singleton
elem_of_replicate
.
naive_solver
.
Qed
.
Qed
.
Lemma
list_lookup_singleton
i
x
:
({[
i
:=
x
]}
:
list
A
)
!!
i
=
Some
x
.
Lemma
list_lookup_singleton
M
i
x
:
({[
i
:=
x
]}
:
list
A
)
!!
i
=
Some
x
.
Proof
.
induction
i
;
by
f_equal
/=.
Qed
.
Proof
.
induction
i
;
by
f_equal
/=.
Qed
.
Lemma
list_lookup_singleton_lt
i
i'
x
:
Lemma
list_lookup_singleton
M
_lt
i
i'
x
:
(
i'
<
i
)
%
nat
→
({[
i
:=
x
]}
:
list
A
)
!!
i'
=
Some
ε
.
(
i'
<
i
)
%
nat
→
({[
i
:=
x
]}
:
list
A
)
!!
i'
=
Some
ε
.
Proof
.
move
:
i'
.
induction
i
;
intros
[|
i'
];
naive_solver
auto
with
lia
.
Qed
.
Proof
.
move
:
i'
.
induction
i
;
intros
[|
i'
];
naive_solver
auto
with
lia
.
Qed
.
Lemma
list_lookup_singleton_gt
i
i'
x
:
Lemma
list_lookup_singleton
M
_gt
i
i'
x
:
(
i
<
i'
)
%
nat
→
({[
i
:=
x
]}
:
list
A
)
!!
i'
=
None
.
(
i
<
i'
)
%
nat
→
({[
i
:=
x
]}
:
list
A
)
!!
i'
=
None
.
Proof
.
move
:
i'
.
induction
i
;
intros
[|
i'
];
naive_solver
auto
with
lia
.
Qed
.
Proof
.
move
:
i'
.
induction
i
;
intros
[|
i'
];
naive_solver
auto
with
lia
.
Qed
.
Lemma
list_lookup_singleton_ne
i
j
x
:
Lemma
list_lookup_singleton
M
_ne
i
j
x
:
i
≠
j
→
i
≠
j
→
({[
i
:=
x
]}
:
list
A
)
!!
j
=
None
∨
({[
i
:=
x
]}
:
list
A
)
!!
j
=
Some
ε
.
({[
i
:=
x
]}
:
list
A
)
!!
j
=
None
∨
({[
i
:=
x
]}
:
list
A
)
!!
j
=
Some
ε
.
Proof
.
revert
j
;
induction
i
;
intros
[|
j
];
naive_solver
auto
with
lia
.
Qed
.
Proof
.
revert
j
;
induction
i
;
intros
[|
j
];
naive_solver
auto
with
lia
.
Qed
.
Lemma
list_singleton_validN
n
i
x
:
✓
{
n
}
({[
i
:=
x
]}
:
list
A
)
↔
✓
{
n
}
x
.
Lemma
list_singleton
M
_validN
n
i
x
:
✓
{
n
}
({[
i
:=
x
]}
:
list
A
)
↔
✓
{
n
}
x
.
Proof
.
Proof
.
rewrite
list_lookup_validN
.
split
.
rewrite
list_lookup_validN
.
split
.
{
move
=>
/
(_
i
)
.
by
rewrite
list_lookup_singleton
.
}
{
move
=>
/
(_
i
)
.
by
rewrite
list_lookup_singleton
M
.
}
intros
Hx
j
;
destruct
(
decide
(
i
=
j
));
subst
.
intros
Hx
j
;
destruct
(
decide
(
i
=
j
));
subst
.
-
by
rewrite
list_lookup_singleton
.
-
by
rewrite
list_lookup_singleton
M
.
-
destruct
(
list_lookup_singleton_ne
i
j
x
)
as
[
Hi
|
Hi
];
first
done
;
-
destruct
(
list_lookup_singleton
M
_ne
i
j
x
)
as
[
Hi
|
Hi
];
first
done
;
rewrite
Hi
;
by
try
apply
(
ucmra_unit_validN
(
A
:=
A
))
.
rewrite
Hi
;
by
try
apply
(
ucmra_unit_validN
(
A
:=
A
))
.
Qed
.
Qed
.
Lemma
list_singleton_valid
i
x
:
✓
({[
i
:=
x
]}
:
list
A
)
↔
✓
x
.
Lemma
list_singleton
M
_valid
i
x
:
✓
({[
i
:=
x
]}
:
list
A
)
↔
✓
x
.
Proof
.
Proof
.
rewrite
!
cmra_valid_validN
.
by
setoid_rewrite
list_singleton_validN
.
rewrite
!
cmra_valid_validN
.
by
setoid_rewrite
list_singleton
M
_validN
.
Qed
.
Qed
.
Lemma
list_singleton_length
i
x
:
length
{[
i
:=
x
]}
=
S
i
.
Lemma
list_singleton
M
_length
i
x
:
length
{[
i
:=
x
]}
=
S
i
.
Proof
.
Proof
.
rewrite
/
singletonM
/
list_singletonM
app_length
replicate_length
/=
;
lia
.
rewrite
/
singletonM
/
list_singletonM
app_length
replicate_length
/=
;
lia
.
Qed
.
Qed
.
Lemma
list_singleton_core
i
(
x
:
A
)
:
core
{[
i
:=
x
]}
≡@
{
list
A
}
{[
i
:=
core
x
]}
.
Lemma
list_singleton
M
_core
i
(
x
:
A
)
:
core
{[
i
:=
x
]}
≡@
{
list
A
}
{[
i
:=
core
x
]}
.
Proof
.
Proof
.
rewrite
/
singletonM
/
list_singletonM
.
rewrite
/
singletonM
/
list_singletonM
.
by
rewrite
{
1
}
/
core
/=
fmap_app
fmap_replicate
(
core_id_core
∅
)
.
by
rewrite
{
1
}
/
core
/=
fmap_app
fmap_replicate
(
core_id_core
∅
)
.
Qed
.
Qed
.
Lemma
list_singleton_op
i
(
x
y
:
A
)
:
Lemma
list_singleton
M
_op
i
(
x
y
:
A
)
:
{[
i
:=
x
]}
⋅
{[
i
:=
y
]}
≡@
{
list
A
}
{[
i
:=
x
⋅
y
]}
.
{[
i
:=
x
]}
⋅
{[
i
:=
y
]}
≡@
{
list
A
}
{[
i
:=
x
⋅
y
]}
.
Proof
.
Proof
.
rewrite
/
singletonM
/
list_singletonM
/=.
rewrite
/
singletonM
/
list_singletonM
/=.
induction
i
;
constructor
;
rewrite
?left_id
;
auto
.
induction
i
;
constructor
;
rewrite
?left_id
;
auto
.
Qed
.
Qed
.
Lemma
list_alter_singleton
f
i
x
:
Lemma
list_alter_singleton
M
f
i
x
:
alter
f
i
({[
i
:=
x
]}
:
list
A
)
=
{[
i
:=
f
x
]}
.
alter
f
i
({[
i
:=
x
]}
:
list
A
)
=
{[
i
:=
f
x
]}
.
Proof
.
Proof
.
rewrite
/
singletonM
/
list_singletonM
/=.
induction
i
;
f_equal
/=
;
auto
.
rewrite
/
singletonM
/
list_singletonM
/=.
induction
i
;
f_equal
/=
;
auto
.
Qed
.
Qed
.
Global
Instance
list_singleton_core_id
i
(
x
:
A
)
:
Global
Instance
list_singleton
M
_core_id
i
(
x
:
A
)
:
CoreId
x
→
CoreId
{[
i
:=
x
]}
.
CoreId
x
→
CoreId
{[
i
:=
x
]}
.
Proof
.
by
rewrite
!
core_id_total
list_singleton_core
=>
->
.
Qed
.
Proof
.
by
rewrite
!
core_id_total
list_singleton
M
_core
=>
->
.
Qed
.
Lemma
list_singleton_snoc
l
x
:
Lemma
list_singleton
M
_snoc
l
x
:
{[
length
l
:=
x
]}
⋅
l
≡
l
++
[
x
]
.
{[
length
l
:=
x
]}
⋅
l
≡
l
++
[
x
]
.
Proof
.
elim
:
l
=>
//=
??
<-.
by
rewrite
left_id
.
Qed
.
Proof
.
elim
:
l
=>
//=
??
<-.
by
rewrite
left_id
.
Qed
.
Lemma
list_singleton_included
i
x
l
:
Lemma
list_singleton
M
_included
i
x
l
:
{[
i
:=
x
]}
≼
l
↔
(
∃
x'
,
l
!!
i
=
Some
x'
∧
x
≼
x'
)
.
{[
i
:=
x
]}
≼
l
↔
(
∃
x'
,
l
!!
i
=
Some
x'
∧
x
≼
x'
)
.
Proof
.
Proof
.
rewrite
list_lookup_included
.
split
.
rewrite
list_lookup_included
.
split
.
{
move
/
(_
i
)
.
rewrite
list_lookup_singleton
option_included_total
.
{
move
/
(_
i
)
.
rewrite
list_lookup_singleton
M
option_included_total
.
naive_solver
.
}
naive_solver
.
}
intros
(
y
&
Hi
&
?)
j
.
destruct
(
Nat
.
lt_total
j
i
)
as
[?|[
->
|?]]
.
intros
(
y
&
Hi
&
?)
j
.
destruct
(
Nat
.
lt_total
j
i
)
as
[?|[
->
|?]]
.
-
rewrite
list_lookup_singleton_lt
//.
-
rewrite
list_lookup_singleton
M
_lt
//.
destruct
(
lookup_lt_is_Some_2
l
j
)
as
[
z
Hz
]
.
destruct
(
lookup_lt_is_Some_2
l
j
)
as
[
z
Hz
]
.
{
trans
i
;
eauto
using
lookup_lt_Some
.
}
{
trans
i
;
eauto
using
lookup_lt_Some
.
}
rewrite
Hz
.
by
apply
Some_included_2
,
ucmra_unit_least
.
rewrite
Hz
.
by
apply
Some_included_2
,
ucmra_unit_least
.
-
rewrite
list_lookup_singleton
Hi
.
by
apply
Some_included_2
.
-
rewrite
list_lookup_singleton
M
Hi
.
by
apply
Some_included_2
.
-
rewrite
list_lookup_singleton_gt
//.
apply
:
ucmra_unit_least
.
-
rewrite
list_lookup_singleton
M
_gt
//.
apply
:
ucmra_unit_least
.
Qed
.
Qed
.
(* Update *)
(* Update *)
Lemma
list_singleton_updateP
(
P
:
A
→
Prop
)
(
Q
:
list
A
→
Prop
)
x
:
Lemma
list_singleton
M
_updateP
(
P
:
A
→
Prop
)
(
Q
:
list
A
→
Prop
)
x
:
x
~~>:
P
→
(
∀
y
,
P
y
→
Q
[
y
])
→
[
x
]
~~>:
Q
.
x
~~>:
P
→
(
∀
y
,
P
y
→
Q
[
y
])
→
[
x
]
~~>:
Q
.
Proof
.
Proof
.
rewrite
!
cmra_total_updateP
=>
Hup
HQ
n
lf
/
list_lookup_validN
Hv
.
rewrite
!
cmra_total_updateP
=>
Hup
HQ
n
lf
/
list_lookup_validN
Hv
.
...
@@ -447,12 +447,12 @@ Section properties.
...
@@ -447,12 +447,12 @@ Section properties.
apply
list_lookup_validN
=>
i
.
apply
list_lookup_validN
=>
i
.
move
:
(
Hv
i
)
Hv'
.
by
destruct
i
,
lf
;
rewrite
/=
?right_id
.
move
:
(
Hv
i
)
Hv'
.
by
destruct
i
,
lf
;
rewrite
/=
?right_id
.
Qed
.
Qed
.
Lemma
list_singleton_updateP'
(
P
:
A
→
Prop
)
x
:
Lemma
list_singleton
M
_updateP'
(
P
:
A
→
Prop
)
x
:
x
~~>:
P
→
[
x
]
~~>:
λ
k
,
∃
y
,
k
=
[
y
]
∧
P
y
.
x
~~>:
P
→
[
x
]
~~>:
λ
k
,
∃
y
,
k
=
[
y
]
∧
P
y
.
Proof
.
eauto
using
list_singleton_updateP
.
Qed
.
Proof
.
eauto
using
list_singleton
M
_updateP
.
Qed
.
Lemma
list_singleton_update
x
y
:
x
~~>
y
→
[
x
]
~~>
[
y
]
.
Lemma
list_singleton
M
_update
x
y
:
x
~~>
y
→
[
x
]
~~>
[
y
]
.
Proof
.
Proof
.
rewrite
!
cmra_update_updateP
;
eauto
using
list_singleton_updateP
with
subst
.
rewrite
!
cmra_update_updateP
;
eauto
using
list_singleton
M
_updateP
with
subst
.
Qed
.
Qed
.
Lemma
app_updateP
(
P1
P2
Q
:
list
A
→
Prop
)
l1
l2
:
Lemma
app_updateP
(
P1
P2
Q
:
list
A
→
Prop
)
l1
l2
:
...
@@ -476,7 +476,7 @@ Section properties.
...
@@ -476,7 +476,7 @@ Section properties.
x
~~>:
P1
→
l
~~>:
P2
→
(
∀
y
k
,
P1
y
→
P2
k
→
Q
(
y
::
k
))
→
x
::
l
~~>:
Q
.
x
~~>:
P1
→
l
~~>:
P2
→
(
∀
y
k
,
P1
y
→
P2
k
→
Q
(
y
::
k
))
→
x
::
l
~~>:
Q
.
Proof
.
Proof
.
intros
.
eapply
(
app_updateP
_
_
_
[
x
]);
intros
.
eapply
(
app_updateP
_
_
_
[
x
]);
naive_solver
eauto
using
list_singleton_updateP'
.
naive_solver
eauto
using
list_singleton
M
_updateP'
.
Qed
.
Qed
.
Lemma
cons_updateP'
(
P1
:
A
→
Prop
)
(
P2
:
list
A
→
Prop
)
x
l
:
Lemma
cons_updateP'
(
P1
:
A
→
Prop
)
(
P2
:
list
A
→
Prop
)
x
l
:
x
~~>:
P1
→
l
~~>:
P2
→
x
::
l
~~>:
λ
k
,
∃
y
k'
,
k
=
y
::
k'
∧
P1
y
∧
P2
k'
.
x
~~>:
P1
→
l
~~>:
P2
→
x
::
l
~~>:
λ
k
,
∃
y
k'
,
k
=
y
::
k'
∧
P1
y
∧
P2
k'
.
...
@@ -523,13 +523,13 @@ Section properties.
...
@@ -523,13 +523,13 @@ Section properties.
Proof. intros; apply list_middle_local_update. by rewrite replicate_length. Qed.
Proof. intros; apply list_middle_local_update. by rewrite replicate_length. Qed.
*)
*)
Lemma
list_alloc_singleton_local_update
x
l
:
Lemma
list_alloc_singleton
M
_local_update
x
l
:
✓
x
→
(
l
,
ε
)
~l
~>
(
l
++
[
x
],
{[
length
l
:=
x
]})
.
✓
x
→
(
l
,
ε
)
~l
~>
(
l
++
[
x
],
{[
length
l
:=
x
]})
.
Proof
.
Proof
.
move
=>
?
.
move
=>
?
.
have
->
:
({[
length
l
:=
x
]}
≡
{[
length
l
:=
x
]}
⋅
ε
)
by
rewrite
right_id
.
have
->
:
({[
length
l
:=
x
]}
≡
{[
length
l
:=
x
]}
⋅
ε
)
by
rewrite
right_id
.
rewrite
-
list_singleton_snoc
.
apply
op_local_update
=>
??
.
rewrite
-
list_singleton
M
_snoc
.
apply
op_local_update
=>
??
.
rewrite
list_singleton_snoc
app_validN
cons_validN
.
split_and
?
=>
//
;
[|
constructor
]
.
rewrite
list_singleton
M
_snoc
app_validN
cons_validN
.
split_and
?
=>
//
;
[|
constructor
]
.
by
apply
cmra_valid_validN
.
by
apply
cmra_valid_validN
.
Qed
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment