Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Gaëtan Gilbert
Iris
Commits
89a00a27
Commit
89a00a27
authored
5 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Move `monPred_at` lemmas up, so we can use them for other lemmas.
parent
048c1078
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/bi/monpred.v
+51
-50
51 additions, 50 deletions
theories/bi/monpred.v
with
51 additions
and
50 deletions
theories/bi/monpred.v
+
51
−
50
View file @
89a00a27
...
@@ -370,6 +370,54 @@ Local Notation BiIndexBottom := (@BiIndexBottom I).
...
@@ -370,6 +370,54 @@ Local Notation BiIndexBottom := (@BiIndexBottom I).
Implicit
Types
i
:
I
.
Implicit
Types
i
:
I
.
Implicit
Types
P
Q
:
monPred
.
Implicit
Types
P
Q
:
monPred
.
(** monPred_at unfolding laws *)
Lemma
monPred_at_pure
i
(
φ
:
Prop
)
:
monPred_at
⌜
φ
⌝
i
⊣⊢
⌜
φ
⌝.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_emp
i
:
monPred_at
emp
i
⊣⊢
emp
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_and
i
P
Q
:
(
P
∧
Q
)
i
⊣⊢
P
i
∧
Q
i
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_or
i
P
Q
:
(
P
∨
Q
)
i
⊣⊢
P
i
∨
Q
i
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_impl
i
P
Q
:
(
P
→
Q
)
i
⊣⊢
∀
j
,
⌜
i
⊑
j
⌝
→
P
j
→
Q
j
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_forall
{
A
}
i
(
Φ
:
A
→
monPred
)
:
(
∀
x
,
Φ
x
)
i
⊣⊢
∀
x
,
Φ
x
i
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_exist
{
A
}
i
(
Φ
:
A
→
monPred
)
:
(
∃
x
,
Φ
x
)
i
⊣⊢
∃
x
,
Φ
x
i
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_sep
i
P
Q
:
(
P
∗
Q
)
i
⊣⊢
P
i
∗
Q
i
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_wand
i
P
Q
:
(
P
-∗
Q
)
i
⊣⊢
∀
j
,
⌜
i
⊑
j
⌝
→
P
j
-∗
Q
j
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_persistently
i
P
:
(
<
pers
>
P
)
i
⊣⊢
<
pers
>
(
P
i
)
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_in
i
j
:
monPred_at
(
monPred_in
j
)
i
⊣⊢
⌜
j
⊑
i
⌝.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_objectively
i
P
:
(
<
obj
>
P
)
i
⊣⊢
∀
j
,
P
j
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_subjectively
i
P
:
(
<
subj
>
P
)
i
⊣⊢
∃
j
,
P
j
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_persistently_if
i
p
P
:
(
<
pers
>
?p
P
)
i
⊣⊢
<
pers
>
?p
(
P
i
)
.
Proof
.
destruct
p
=>
//=.
apply
monPred_at_persistently
.
Qed
.
Lemma
monPred_at_affinely
i
P
:
(
<
affine
>
P
)
i
⊣⊢
<
affine
>
(
P
i
)
.
Proof
.
by
rewrite
/
bi_affinely
monPred_at_and
monPred_at_emp
.
Qed
.
Lemma
monPred_at_affinely_if
i
p
P
:
(
<
affine
>
?p
P
)
i
⊣⊢
<
affine
>
?p
(
P
i
)
.
Proof
.
destruct
p
=>
//=.
apply
monPred_at_affinely
.
Qed
.
Lemma
monPred_at_intuitionistically
i
P
:
(
□
P
)
i
⊣⊢
□
(
P
i
)
.
Proof
.
by
rewrite
/
bi_intuitionistically
monPred_at_affinely
monPred_at_persistently
.
Qed
.
Lemma
monPred_at_intuitionistically_if
i
p
P
:
(
□
?p
P
)
i
⊣⊢
□
?p
(
P
i
)
.
Proof
.
destruct
p
=>
//=.
apply
monPred_at_intuitionistically
.
Qed
.
Lemma
monPred_at_absorbingly
i
P
:
(
<
absorb
>
P
)
i
⊣⊢
<
absorb
>
(
P
i
)
.
Proof
.
by
rewrite
/
bi_absorbingly
monPred_at_sep
monPred_at_pure
.
Qed
.
Lemma
monPred_at_absorbingly_if
i
p
P
:
(
<
absorb
>
?p
P
)
i
⊣⊢
<
absorb
>
?p
(
P
i
)
.
Proof
.
destruct
p
=>
//=.
apply
monPred_at_absorbingly
.
Qed
.
Lemma
monPred_wand_force
i
P
Q
:
(
P
-∗
Q
)
i
-∗
(
P
i
-∗
Q
i
)
.
Proof
.
unseal
.
rewrite
bi
.
forall_elim
bi
.
pure_impl_forall
bi
.
forall_elim
//.
Qed
.
Lemma
monPred_impl_force
i
P
Q
:
(
P
→
Q
)
i
-∗
(
P
i
→
Q
i
)
.
Proof
.
unseal
.
rewrite
bi
.
forall_elim
bi
.
pure_impl_forall
bi
.
forall_elim
//.
Qed
.
(** Instances *)
(** Instances *)
Global
Instance
monPred_at_mono
:
Global
Instance
monPred_at_mono
:
Proper
((
⊢
)
==>
(
⊑
)
==>
(
⊢
))
monPred_at
.
Proper
((
⊢
)
==>
(
⊑
)
==>
(
⊢
))
monPred_at
.
...
@@ -422,6 +470,9 @@ Global Instance monPred_bi_embed : BiEmbed PROP monPredI :=
...
@@ -422,6 +470,9 @@ Global Instance monPred_bi_embed : BiEmbed PROP monPredI :=
Global
Instance
monPred_bi_embed_emp
:
BiEmbedEmp
PROP
monPredI
.
Global
Instance
monPred_bi_embed_emp
:
BiEmbedEmp
PROP
monPredI
.
Proof
.
split
.
by
unseal
.
Qed
.
Proof
.
split
.
by
unseal
.
Qed
.
Lemma
monPred_at_embed
i
(
P
:
PROP
)
:
monPred_at
⎡
P
⎤
i
⊣⊢
P
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_emp_unfold
:
emp
%
I
=
⎡
emp
:
PROP
⎤%
I
.
Lemma
monPred_emp_unfold
:
emp
%
I
=
⎡
emp
:
PROP
⎤%
I
.
Proof
.
by
unseal
.
Qed
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_pure_unfold
:
bi_pure
=
λ
φ
,
⎡
⌜
φ
⌝
:
PROP
⎤%
I
.
Lemma
monPred_pure_unfold
:
bi_pure
=
λ
φ
,
⎡
⌜
φ
⌝
:
PROP
⎤%
I
.
...
@@ -469,56 +520,6 @@ Proof. rewrite monPred_subjectively_unfold. apply _. Qed.
...
@@ -469,56 +520,6 @@ Proof. rewrite monPred_subjectively_unfold. apply _. Qed.
Global
Instance
monPred_subjectively_affine
P
:
Affine
P
→
Affine
(
<
subj
>
P
)
.
Global
Instance
monPred_subjectively_affine
P
:
Affine
P
→
Affine
(
<
subj
>
P
)
.
Proof
.
rewrite
monPred_subjectively_unfold
.
apply
_
.
Qed
.
Proof
.
rewrite
monPred_subjectively_unfold
.
apply
_
.
Qed
.
(** monPred_at unfolding laws *)
Lemma
monPred_at_embed
i
(
P
:
PROP
)
:
monPred_at
⎡
P
⎤
i
⊣⊢
P
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_pure
i
(
φ
:
Prop
)
:
monPred_at
⌜
φ
⌝
i
⊣⊢
⌜
φ
⌝.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_emp
i
:
monPred_at
emp
i
⊣⊢
emp
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_and
i
P
Q
:
(
P
∧
Q
)
i
⊣⊢
P
i
∧
Q
i
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_or
i
P
Q
:
(
P
∨
Q
)
i
⊣⊢
P
i
∨
Q
i
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_impl
i
P
Q
:
(
P
→
Q
)
i
⊣⊢
∀
j
,
⌜
i
⊑
j
⌝
→
P
j
→
Q
j
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_forall
{
A
}
i
(
Φ
:
A
→
monPred
)
:
(
∀
x
,
Φ
x
)
i
⊣⊢
∀
x
,
Φ
x
i
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_exist
{
A
}
i
(
Φ
:
A
→
monPred
)
:
(
∃
x
,
Φ
x
)
i
⊣⊢
∃
x
,
Φ
x
i
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_sep
i
P
Q
:
(
P
∗
Q
)
i
⊣⊢
P
i
∗
Q
i
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_wand
i
P
Q
:
(
P
-∗
Q
)
i
⊣⊢
∀
j
,
⌜
i
⊑
j
⌝
→
P
j
-∗
Q
j
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_persistently
i
P
:
(
<
pers
>
P
)
i
⊣⊢
<
pers
>
(
P
i
)
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_in
i
j
:
monPred_at
(
monPred_in
j
)
i
⊣⊢
⌜
j
⊑
i
⌝.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_objectively
i
P
:
(
<
obj
>
P
)
i
⊣⊢
∀
j
,
P
j
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_subjectively
i
P
:
(
<
subj
>
P
)
i
⊣⊢
∃
j
,
P
j
.
Proof
.
by
unseal
.
Qed
.
Lemma
monPred_at_persistently_if
i
p
P
:
(
<
pers
>
?p
P
)
i
⊣⊢
<
pers
>
?p
(
P
i
)
.
Proof
.
destruct
p
=>
//=.
apply
monPred_at_persistently
.
Qed
.
Lemma
monPred_at_affinely
i
P
:
(
<
affine
>
P
)
i
⊣⊢
<
affine
>
(
P
i
)
.
Proof
.
by
rewrite
/
bi_affinely
monPred_at_and
monPred_at_emp
.
Qed
.
Lemma
monPred_at_affinely_if
i
p
P
:
(
<
affine
>
?p
P
)
i
⊣⊢
<
affine
>
?p
(
P
i
)
.
Proof
.
destruct
p
=>
//=.
apply
monPred_at_affinely
.
Qed
.
Lemma
monPred_at_intuitionistically
i
P
:
(
□
P
)
i
⊣⊢
□
(
P
i
)
.
Proof
.
by
rewrite
/
bi_intuitionistically
monPred_at_affinely
monPred_at_persistently
.
Qed
.
Lemma
monPred_at_intuitionistically_if
i
p
P
:
(
□
?p
P
)
i
⊣⊢
□
?p
(
P
i
)
.
Proof
.
destruct
p
=>
//=.
apply
monPred_at_intuitionistically
.
Qed
.
Lemma
monPred_at_absorbingly
i
P
:
(
<
absorb
>
P
)
i
⊣⊢
<
absorb
>
(
P
i
)
.
Proof
.
by
rewrite
/
bi_absorbingly
monPred_at_sep
monPred_at_pure
.
Qed
.
Lemma
monPred_at_absorbingly_if
i
p
P
:
(
<
absorb
>
?p
P
)
i
⊣⊢
<
absorb
>
?p
(
P
i
)
.
Proof
.
destruct
p
=>
//=.
apply
monPred_at_absorbingly
.
Qed
.
Lemma
monPred_wand_force
i
P
Q
:
(
P
-∗
Q
)
i
-∗
(
P
i
-∗
Q
i
)
.
Proof
.
unseal
.
rewrite
bi
.
forall_elim
bi
.
pure_impl_forall
bi
.
forall_elim
//.
Qed
.
Lemma
monPred_impl_force
i
P
Q
:
(
P
→
Q
)
i
-∗
(
P
i
→
Q
i
)
.
Proof
.
unseal
.
rewrite
bi
.
forall_elim
bi
.
pure_impl_forall
bi
.
forall_elim
//.
Qed
.
(* Laws for monPred_objectively and of Objective. *)
(* Laws for monPred_objectively and of Objective. *)
Lemma
monPred_objectively_elim
P
:
<
obj
>
P
⊢
P
.
Lemma
monPred_objectively_elim
P
:
<
obj
>
P
⊢
P
.
Proof
.
rewrite
monPred_objectively_unfold
.
unseal
.
split
=>?
.
apply
bi
.
forall_elim
.
Qed
.
Proof
.
rewrite
monPred_objectively_unfold
.
unseal
.
split
=>?
.
apply
bi
.
forall_elim
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment